纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 32-38.doi: 10.13475/j.fzxb.20190803007

• 纺织工程 • 上一篇    下一篇

球形弹体冲击下三维正交机织物结构破坏机制有限元分析

武鲜艳1,2,3, 申屠宝卿1(), 马倩4, 金利民5, 张威6, 谢胜2   

  1. 1.浙江大学 化学工程与生物工程学院, 浙江 杭州 310027
    2.嘉兴学院 材料与纺织工程学院, 浙江嘉兴 314001
    3.浙江双箭橡胶股份有限公司, 浙江 嘉兴 314513
    4.盐城工业职业技术学院 纺织服装学院,江苏 盐城 224005
    5.中国科学院 上海高等研究院, 上海 201204
    6.东华大学 纺织学院, 上海 201620
  • 收稿日期:2019-08-12 修回日期:2020-04-28 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 申屠宝卿
  • 作者简介:武鲜艳(1989—),女,讲师,博士。主要研究方向为纺织复合材料力学。
  • 基金资助:
    国家自然科学基金项目(51805210);国家自然科学基金项目(11702113);中国博士后科学基金项目(2019M652075);浙江省纱线材料成形与复合加工技术研究重点实验室开放基金项目(MTC2019-11);嘉兴市科技计划项目(2019AD32005)

Finite element analysis on structural failure mechanism ofthree-dimensional orthogonal woven fabrics subjected to impact of spherical projectile

WU Xianyan1,2,3, SHENTU Baoqing1(), MA Qian4, JIN Limin5, ZHANG Wei6, XIE Sheng2   

  1. 1. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
    2. College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Zhejiang Double Arrow Rubber Co., Ltd., Jiaxing, Zhejiang 314513, China
    4. College of Textile and Clothing, Yancheng Vocational Institute of Industry Technology, Yancheng, Jiangsu 224005, China
    5. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, China
    6. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2019-08-12 Revised:2020-04-28 Online:2020-08-15 Published:2020-08-21
  • Contact: SHENTU Baoqing

摘要:

为深入研究抗冲击三维正交机织物的破坏机制,通过有限元建模分析,以三维正交机织物为靶体,在纱线尺度细观结构模型上计算其在不同初始速度球形弹体冲击下的渐进破坏过程。对不同初始速度下球形弹体的速度和加速度变化历程、各纱线系统吸能比例、材料渐进破坏过程以及最终破坏形态等进行分析。结果表明:平直排列的纱线系统在吸收与耗散球形弹体冲击能量的过程中发挥重要作用,可使能量以很快的应力波速扩展到三维正交机织物靶体的大面积区域,并提高吸能效果;球形弹体初始速度为100 m/s时,经、纬、Z纱系统可分别吸收总能量的39.6%、48.37%、12.03%,经、纬纱系统为三维正交机织物靶体抵抗冲击力过程中的主要承力部位;通过增加纱线层数、织物体积及织造密度等可提高三维正交机织物材料的抗冲击性能。

关键词: 三维正交机织物, 球形弹体, 破坏机制, 有限元分析

Abstract:

To study the structural failure mechanism of the three-dimensional (3-D) orthogonal woven fabric subjected to the impact loading, the progressive failure process of the 3-D orthogonal woven fabric target under different initial striking velocities was calculated via finite element analysis. By comparatively analyzing the evolution procedures of projectile velocities and accelerations, the energy absorption ratios of the yarn systems, the progressive failure process and the ultimate failure modes for various initial striking velocities, it is found that the linearly aligned yarn systems play a pretty important role in the process of absorbing and dissipating the impact energy of the spherical projectile. The energy can be propagated to a large area of the 3-D orthogonal woven fabric target with a high stress wave velocity and thus the energy absorption effect is improved. Besides, the warp, weft, and Z yarn systems absorb 39.6%, 48.37% and 12.03% of the total energy at the initial striking velocity 100 m/s, respectively. The warp and weft yarn systems are the primary load-bearing parts during the impact resisting process for the 3-D orthogonal woven fabric target. The impact resistance performance of 3-D orthogonal woven fabric structural material can be improved by increasing the number of layers, volume and weaving density of the fabric.

Key words: three-dimensional orthogonal woven fabric, spherical projectile, failure mechanism, finite element analysis

中图分类号: 

  • TS101.2

表1

纱线与球形弹体的材料参数"

类别 密度/
(g·cm-3)
弹性模
量/GPa
泊松
强力/
GPa
断裂伸
长率/%
经/纬/Z 2.50 70.00 0.20 2.30 2.2
球形弹体 7.80 200.00 0.30

图1

三维正交机织物的结构图"

图2

三维正交机织物冲击工况有限元模型"

表2

有限元模型中各部件相关参数"

类别 层数 数目 体积/mm3 质量/g
经纱 5 55(全)+10(半) 2 665.9 6.66
纬纱 6 72 3 199.1 8.00
Z 1 12 971.8 2.43
球形弹体 1 523.3 4.08

图3

球形弹体的速度-时间与加速度-时间曲线图"

表3

不同初始速度下三维正交机织物靶体所吸收的球形弹体动能"

vs/(m·s-1) vr/(m·s-1) E0/J EA/J η/%
200 154.5 81.6 32.9 40.3
150 92.8 45.9 28.3 61.7
100 0→反弹 20.4 20.4* 100.0*

图4

初始速度为100 m/s时各纱线系统能量变化曲线"

图5

初始速度为100 m/s时各纱线系统吸收冲击能量的比例"

图6

不同初始速度冲击下三维正交机织物靶体的渐进破坏形态"

图7

不同初始速度冲击下三维正交机织物靶体的最终破坏形态"

[1] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of applications for advanced three-dimensional fibre textile composites[J]. Composites Part A: Applied Science & Manufacturing, 1999,30:1445-1461.
[2] MIRAVETE A. 3-D textile reinforcements in composite materials[M]. Cambridge: Woodhead Publishing Limited, 1999: 9-65.
[3] HU J. 3-D fibrous assemblies: properties, applications and modelling of three-dimensional textile struc-tures[M]. Cambridge: Woodhead Publishing Limited, 2008: 1-32.
[4] 徐艺榕, 孙颖, 韩朝锋, 等. 复合材料用三维机织物成型性的研究进展[J]. 纺织学报, 2014,35(9):165-172.
XU Yirong, SUN Ying, HAN Chaofeng, et al. Research progress of formability of three-dimensional woven fabrics for composites[J]. Journal of Textile Research, 2014,35(9):165-172.
[5] 李晓英, 蒋高明, 马丕波, 等. 三维横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016,37(7):66-70.
LI Xiaoying, JIANG Gaoming, MA Pibo, et al. Knitting processes and properties of three-dimensional computer flat-knitted spacer fabrics[J]. Journal of Textile Research, 2016,37(7):66-70.
[6] TONG L, MOURITZ A P, BANNISTER M K. 3D fibre reinforced polymer composites[M]. Boston: Elsevier Science Limited, 2002: 1-12.
[7] CHEN X, TAYLOR L W, TSAI L J. An overview on fabrication of three-dimensional woven textile preforms for composites[J]. Textile Research Journal, 2011,81(9):932-944.
[8] 马亚运, 高晓平. 三维正交机织复合材料拉伸性能研究[J]. 上海纺织科技, 2017,45(2):5-7.
MA Yayun, GAO Xiaoping. Tensile property of 3D orthogonal woven composite material[J]. Shanghai Textile Science & Technology, 2017,45(2):5-7.
[9] XU Y H, HU H, YUAN X L. Geometrical analysis of co-woven-knitted preform for composite reinforce-ment[J]. The Journal of The Textile Institute, 2011,102(5):405-418.
[10] 马丕波, 孙亚鑫. 针织结构材料在安全防护领域的应用研究进展[J]. 纺织学报, 2019,40(6):177-182.
MA Pibo, SUN Yaxin. Advances in knitted structural materials for safety protection[J]. Journal of Textile Research, 2019,40(6):177-182.
[11] 谷元慧, 张典堂, 贾明皓, 等. 碳纤维增强编织复合材料圆管制备及其压缩性能[J]. 纺织学报, 2019,40(7):71-77.
GU Yuanhui, ZHANG Diantang, JIA Minghao, et al. Preparation and compressive properties of carbon fiber reinforced braided composite circular tubes[J]. Journal of Textile Research, 2019,40(7):71-77.
[12] BILISIK K. Three-dimensional braiding for composites: a review[J]. Textile Research Journal, 2013,83(13):1414-1436.
[13] GENG X J, LIU L F, YAN J H, et al. A new three-dimensional braiding method for net shape fabrication of a complex perform with rounding chamfer[J]. Journal of Reinforced Plastics & Composites, 2013,32(13):964-973.
[14] 李婉婉, 汪进前, 盖燕芳, 等. 玄武岩/碳纤维混杂三维正交复合材料拉伸性能研究[J]. 现代纺织技术, 2019,27(2):1-5.
LI Wanwan, WANG Jinqian, GE Yanfang, et al. Investigation on tensile properties of three-dimensional orthogonal basalt/carbon fiber hybrid composites[J]. Advanced Textile Technology, 2019,27(2):1-5.
[15] JIA X W, SUN B Z, GU B H. A numerical simulation on ballistic penetration damage of 3D orthogonal woven fabric at microstructure level[J]. International Journal of Damage Mechanics, 2012,21(2):237-266.
doi: 10.1177/1056789510397078
[16] JIA X W, SUN B Z, GU B H. Ballistic penetration of conically cylindrical steel projectile into 3D orthogonal woven composite: a finite element study at microstructure level[J]. Journal of Composite Materials, 2011,45(9):965-987.
doi: 10.1177/0021998310381150
[17] SHI W F, HU H, SUN B Z, et al. Energy absorption of 3D orthogonal woven fabric under ballistic penetration of hemispherical-cylindrical projectile[J]. The Journal of The Textile Institute, 2011,102(10):875-889.
doi: 10.1080/00405000.2010.525815
[18] JIN L M, SUN B Z, GU B H. Finite element simulation of three-dimensional angle-interlock woven fabric undergoing ballistic impact[J]. The Journal of The Textile Institute, 2011,102(11):982-993.
doi: 10.1080/00405000.2010.529279
[19] 徐婉丽, 常玉萍, 马丕波. 负泊松比经编间隔织物的抗低速冲击性能[J]. 纺织学报, 2018,39(11):45-49.
XU Wanli, CHANG Yuping, MA Pibo. Low velocity impact resistance of warp-knitted spacer fabrics of negative Poisson's ratio[J]. Journal of Textile Research, 2018,39(11):45-49.
[1] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[2] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[3] 马倩 王可 金利民. 三维角联锁机织复合材料的冲击破坏有限元模拟分析[J]. 纺织学报, 2017, 38(07): 63-68.
[4] 李冠志 赵强 汪军 Gong Hugh . 纱线截面压缩变形仿真与验证[J]. 纺织学报, 2017, 38(02): 184-190.
[5] 杜梅 王春霞 董凯 金利民. 基于有限元的芯村增强材料抗冲击性能分析[J]. 纺织学报, 2015, 36(08): 62-67.
[6] 陈威亚 刘延波 王洋知 沈烨伟 郭岭岭. 多针头静电纺丝过程中电场强度与分布的有限元分析[J]. 纺织学报, 2014, 35(6): 1-0.
[7] 杜梅 王春霞 金利民. 施载方式对单向复合材料抗拉性能影响的有限元分析[J]. 纺织学报, 2014, 35(10): 55-0.
[8] 刘菁 王鑫. 影响静电纺丝电场强度的因素分析[J]. 纺织学报, 2013, 34(10): 6-0.
[9] 史伟民 未印 彭来湖 沈加海 张少民 陈华. 起毛机大扭矩平稳传动系统设计[J]. 纺织学报, 2012, 33(10): 134-140.
[10] 束永平;矫海静. 细纱机双皮圈牵伸装置的静态正压力分析[J]. 纺织学报, 2011, 32(4): 123-127.
[11] 罗以喜;朱昊 . 多向载荷下PVC双轴向经编织物有限元分析[J]. 纺织学报, 2009, 30(12): 50-54.
[12] 罗以喜. 双向载荷下PVC涂层双轴向经编织物有限元分析[J]. 纺织学报, 2009, 30(10): 66-69.
[13] 陈光伟;陈利;李嘉禄;周清;孙颖. 三维多向编织复合材料T型梁抗弯应力分析[J]. 纺织学报, 2009, 30(08): 54-58.
[14] 许宝锋. 纺粘法工艺中气流场的探讨[J]. 纺织学报, 2009, 30(05): 52-57.
[15] 张淑洁;王瑞;徐磊;王欢. 管状纺织复合材料力学性能的有限元分析[J]. 纺织学报, 2008, 29(5): 51-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!