纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 16-20.doi: 10.13475/j.fzxb.20190904105

• 纤维材料 • 上一篇    下一篇

高强度聚氯乙烯中空纤维膜的制备及其性能

梅硕1(), 李金超2, 卢士艳1, 肖长发3, 杨勇1, 冯向伟2   

  1. 1.中原工学院 纺织学院, 河南 郑州 450007
    2.河南工程学院 纺织学院, 河南 郑州 451191
    3.天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
  • 收稿日期:2019-09-16 修回日期:2020-06-08 出版日期:2020-09-15 发布日期:2020-09-25
  • 作者简介:梅硕(1983—),女,讲师,博士。主要研究方向为分离膜材料。E-mail: meishuo2013@126.com
  • 基金资助:
    中国纺织工业联合会科技指导性项目(2018067);河南省高等学校重点科研项目(16B540001);河南省高等学校重点科研项目(14A540004);天津市省部共建分离膜与膜过程国家重点实验室项目(M2-201601);中国工程院“先进基础材料强国战略研究课题”子项目(2018-ZD-03)

Preparation and properties of high strength polyvinyl chloride hollow fiber membrane

MEI Shuo1(), LI Jinchao2, LU Shiyan1, XIAO Changfa3, YANG Yong1, FENG Xiangwei2   

  1. 1. School of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. School of Textiles, Henan University of Engineering, Zhengzhou, Henan 451191, China
    3. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
  • Received:2019-09-16 Revised:2020-06-08 Online:2020-09-15 Published:2020-09-25

摘要:

针对溶液相转化法制备的聚氯乙烯(PVC)膜存在强度及通透性能难以同步提高的问题,以MT-I型复合粉为成孔剂,邻苯二甲酸二辛酯为稀释剂,采用螺杆挤出法制备了PVC中空纤维膜,研究了拉伸和萃取过程对纤维膜形貌及结构的影响,并通过水通量、碳素墨水截留率及拉伸强力测试分析了纤维膜的分离性能和力学性能。结果表明:随着拉伸倍数的增加,PVC中空纤维膜的断裂强度增大,断裂伸长率减小;经乙醇萃取后纤维膜表面出现了更多微孔,纤维膜的通透性能提高;当拉伸倍数为3时,纤维膜具有较高通透性和较好的力学性能,水通量为798 L/(m2·h),拉伸断裂强度为17.7 MPa,断裂伸长率为70.67%。

关键词: 聚氯乙烯, 螺杆挤出法, 中空纤维膜, 分离膜, 水处理, 截留率

Abstract:

In order to solve the problem of hard synchronous increase strength and permeability of polyvinyl chloride (PVC) membrane obtained by solution phase inversion method, high performance of PVC hollow fiber membranes were prepared using the screw extrusion spinning method, with MT-I composite powder as pore-forming agent and dioctyl phthalate as diluent. The influences of heat setting ratio and extraction on morphology and structure of fiber membrane were investigated. Separation performance and mechanical properties of fiber membranes were characterized by pure water flux, rejection of carbon ink and tensile strength. Results show that as the stretching ratio increased, the tensile strength of the membrane increases and elongation at break decreases. After ethanol extraction, more micro pores appear on the surface of the membrane which improves the permeability of the membrane. The membrane with stretching ratio 3 after ethanol extraction exhibits a larger permeability with pure water flux of 798 L/(m2·h), and a better performance with tensile strength of 17.7 MPa and elongation at break of 70.67%.

Key words: polyvinyl chloride, screw extrusion spinning method, hollow fiber membrane, separation membrane, water treatment, rejection ratio

中图分类号: 

  • TB324

图1

螺杆挤出法纺PVC中空纤维膜过程示意图 1—进料口;2—双螺杆;3—计量泵;4—熔体;5—氮气;6—喷丝头;7—中空纤维膜。"

图2

PVC及PVC/DOP初生中空纤维膜红外光谱图"

表1

DOP对PVC中空纤维膜的A1 427/A1 435比值的影响"

纤维膜 A1 427 A1 435 A1 427/A1 435
纯PVC纤维膜 0.024 80 0.023 47 1.056 70
PVC/DOP初生纤维膜 0.032 02 0.026 67 1.201 00

图3

不同拉伸倍数PVC/DOP中空纤维膜横断面形貌"

图4

DOP萃取前后对PVC纤维膜横断面形貌影响"

图5

不同拉伸热定型倍数下PVC/DOP中空纤维膜纯水通量和截留率"

图6

DOP萃取后PVC中空纤维膜纯水通量和截留率"

图7

不同拉伸热定型倍数下PVC/DOP及PVC中空纤维膜力学性能"

[1] 文佩, 钱建华. 中空纤维超滤膜在水处理中的应用[J]. 纺织学报, 2014,35(8):15-20.
WEN Pei, QIAN Jianhua. Application of hollow fiber ultrafiltration membrane in water treatment[J]. Journal of Textile Research, 2014,35(8):15-20.
[2] LIU T Y, ZHANG R X, LI Q, et al. Fabrication of anovel dual-layer (PES/PVDF) hollow fiber ultrafiltration membrane for waste water treatment[J]. Journal of Membrane Science, 2014,472:119-132.
[3] 刘海亮, 肖长发, 黄庆林, 等. 增强型中空纤维多孔膜研究进展[J]. 纺织学报, 2015,36(9):154-161.
LIU Hailiang, XIAO Changfa, HUANG Qinglin, et al. Research progress of reinforced hollow fiber porous membranes[J]. Journal of Textile Research, 2015,36(9):154-161.
[4] 梅硕. 聚氯乙烯微孔膜的机构设计与性能研究[D]. 天津:天津工业大学, 2011:81-83.
MEI Shuo. Structure design and properties research on Poly (vinyl chloride) miscroporous membrane[D]. Tianjin: Tiangong University, 2011: 81-83.
[5] ZHANG X, CHEN Y, KONSOWA A H, et al. Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment[J]. Separation Purification Technology, 2009,70(1):71-78.
[6] WANG J H, WU Y L, ZHANG Y h, et al. Fabrication and performance of a low operating pressure nanofitration poly(vinyl chloride) hollow fiber membrane[J]. Chinese Journal of Polymer Science, 2014,32(3):377-384.
[7] XU J, XU Z L. Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent[J]. Journal of Membrane Science, 2002,208(1-2):203-212.
doi: 10.1016/S0376-7388(02)00261-2
[8] SABERI S, SHAMSABADI A A, SHAHROOZ M, et al. Improving the transport and antifouling properties of poly(vinyl chloride) hollow-fiber ultrafiltration membranes by incorporating silica nanoparticles[J]. ACS Omega, 2018,3(12):17439-17446.
pmid: 31458349
[9] LIU H L, XIAO C F, HUANG Q L, et al. Post-treatment effect on morphology and performance of polyurethane·based hollow fiber membranes through melt-spinning method[J]. Journal of Membrane Science, 2013,427:326-335.
[10] LIU H L, XIAO C F, HUANG Q L, et al. Preparation and interface structure study on dual-layer polyvinyl chloride matrix reinforced hollow fiber membranes[J]. Journal of Membrane Science, 2014,472(2) 210-221.
[11] 鲁方. 同质增强型聚氯乙烯中空纤维膜结构调控与性能研究[D]. 天津:天津工业大学, 2019:18-19.
LU Fang. Study on structure regulation and properties of homogeneous reinforced polyvinyl chloride hollow fiber membrane[D]. Tiangong University, 2019:18-19.
[12] KIM H C, GILBERT M. Characterisation and properties of oriented PVC fibres[J]. Polymer, 2004,45(21):7293-7301.
[13] 张美珍, 王桂花. 用红外光谱法研究聚氯乙烯的增塑机理[J]. 北京化工大学学(自然科学版), 2000,27(2):29-31.
ZHANG Meizhen, WANG Guihua. Study of the mechanism in plasitized PVC with infrared spectrograp-hy[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2000,27(2):29-31.
[1] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/ 多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[2] 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110.
[3] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[4] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[5] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[6] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[7] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr( VI) 和Pb( II) 的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
[8] 施小平, 李瑶, 潘家豪, 王挺, 吴礼光. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019, 40(10): 105-112.
[9] 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
[10] 李娜娜, 鲁清晨, 尹巍巍, 肖长发. 冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响[J]. 纺织学报, 2019, 40(07): 8-12.
[11] 汪泽幸, 朱文佳, 何斌, 刘超. 单轴多级循环加载下聚氯乙烯膜材料的力学行为与能量耗散[J]. 纺织学报, 2019, 40(06): 20-26.
[12] 张兰河, 张明爽, 高伟围, 李正, 贾艳萍, 高敏, 凌良雄. 铝酸钴/蜂窝陶瓷催化剂的制备及其在印染废水处理中的应用[J]. 纺织学报, 2019, 40(03): 125-132.
[13] 汪风波, 王加毅, 孙正, 马颜雪, 吕迎智, 张魏峰, 吕艳, 吕明明, 陈思雨, 李毓陵, 陈小光. 聚丙烯酸酯浆料废水处理中试研究[J]. 纺织学报, 2019, 40(01): 108-113.
[14] 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107.
[15] 汪泽幸 刘超 何斌 周锦涛 李洪登. 聚氯乙烯涂层膜材料非线性蠕变性能预测[J]. 纺织学报, 2018, 39(10): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!