纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 87-93.doi: 10.13475/j.fzxb.20191202907

• 染整与化学品 • 上一篇    下一篇

光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解

李庆1(), 管斌斌1, 王雅1, 刘天卉1, 张洛红1, 樊增禄2   

  1. 1.西安工程大学 环境与化学工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
  • 收稿日期:2019-12-11 修回日期:2020-06-24 出版日期:2020-10-15 发布日期:2020-10-27
  • 作者简介:李庆(1983—),男,副教授,博士。主要研究方向为功能性金属有机框架材料的构筑及对染料废水的处理。E-mail:liqingxpu1@163.com
  • 基金资助:
    国家级大学生创新训练计划项目(201910709016);陕西省重点研发计划项目(2020GY-276);陕西省科技计划项目(2019GY-163);陕西省教育厅服务地方专项计划项目(19JC016);西安市科技计划项目(2019217114GXRC007CG008-GXYD7.1);西安工程大学研究生创新基金项目(chx2020023)

Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R

LI Qing1(), GUAN Binbin1, WANG Ya1, LIU Tianhui1, ZHANG Luohong1, FAN Zenglu2   

  1. 1. College of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Materials and Products, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2019-12-11 Revised:2020-06-24 Online:2020-10-15 Published:2020-10-27

摘要:

针对活性染料废水引起的水污染,采用硝酸铜与4,4',4″-[1,3,5-苯基三(酰胺基)]三苯甲酸(H3L)反应,制备了三维多孔的Cu-有机骨架(Cu-MOF)材料,对染料进行光催化降解。研究了Cu-MOF的热学性能,通过粉末X射线衍射分析确认了其结构特征。通过可见光吸收能力不同的甲基橙(MO)和亚甲基蓝(MB)对Cu-MOF进行敏化,制备了2种复合材料以提升光催化降解效能。研究表明:Cu-MOF及MO-Cu-MOF和MB-Cu-MOF(10 mg) 对40 mL 的34.02 mg/L的活性深蓝K-R的可见光催化降解效率分别为42.4%、76.2%和88.4%,光催化速率常数分别为0.029、0.082、0.122 h-1,最佳pH值为8;5次光催化循环之后,MB-Cu-MOF对治性深蓝K-R的降解效率仍高达75.1%。

关键词: Cu-有机骨架, 光敏剂, 可见光催化降解, 活性染料, 印染废水

Abstract:

Three-dimensional porous Cu-organic skeleton material (Cu-MOF) was synthesized from the reaction of copper nitrate and 4,4',4″-[1,3,5-benzenetriyltris(carbonylimino)] trisbenzoic acid (H3L) to address the challenge of water pollution caused by reactive dyes containing wastewater by virtue of photocatalytic degradation. The thermal weight loss properties of the Cu-MOF were studied by thermal weight loss analysis and the powder X-ray diffraction analysis to confirm its structural characteristics. Then, the Cu-MOF was sensitized by methyl orange (MO) and methylene blue (MB) with different visible light absorption capacity, providing two kinds of composites to improve the photocatalytic degradation efficiency. The studies reveal that Cu-MOF and its composites MO-Cu-MOF and MB-Cu-MOF (10 mg) performs the visible photocatalytic degradation efficiency of 42.4%, 76.2% and 88.4%, with corresponding photocatalytic rate constants of 0.029 h-1, 0.082 h-1 and 0.122 h-1, respectively, towards Reactive Dark Blue K-R(RB13) and the optimal pH value is 8. After five cycles of photocatalytic degradation, the degradation efficiency of MB-Cu-MOF towards RB13 still reaches 75.1%.

Key words: Cu-organic framework, sensitization, visible photocatalytic degradation, reactive dye, dyeing waste water

中图分类号: 

  • TS190.2

图1

Cu-MOF的配位自组装"

图2

Cu-MOF的热质量损失分析曲线"

图3

单颗晶体与大量合成样品的PXRD谱图"

图4

Cu-MOF对MB和MO的吸附及染料吸光度的变化"

图5

Cu-MOF、MO-Cu-MOF和MB-Cu-MOF光催化降解RB13染料过程中的吸光度"

图6

Cu-MOF、MO-Cu-MOF和MB-Cu-MOF光催化降解RB13染料过程中的降解效率"

图7

Cu-MOF、MO-Cu-MOF和MB-Cu-MOF光催化降解RB13染料过程中的降解速率"

图8

Cu-MOF的敏化及光催化降解RB13的可能机制"

图9

MB-Cu-MOF的光催化循环使用能力"

图10

pH值对光催化降解效率的影响"

[1] LI Q, FAN Z L, XUE D X, et al. A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible light irradiation[J]. Journal of Materials Chemistry A, 2018,6(5):2148-2156.
doi: 10.1039/C7TA10184H
[2] HASAN Z, CHO D W, ISLAM G J, et al. Catalytic decoloration of commercial azo dyes by copper-carboncomposites derived from metal organic frame-works[J]. Journal of Alloys & Compounds, 2016,689:625-631.
[3] 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018,39(2):112-118.
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of dye wastewaterover Cu-organic framework[J]. Journal of Textile Research, 2018,39(2):112-118.
[4] 郭璇, 王宇航. FeCl3改性活性炭对罗丹明B的吸附性能[J]. 西安工程大学学报, 2017,31(4):474-479.
GUO Xuan, WANG Yuhang. Adsorption of rhodamine B on activated carbon modified by FeCl3[J]. Journal of Xi'an Polytechnic University, 2017,31(4):474-479.
[5] ZOU H, SONG M X, YI F C, et al. Simulated-sunlight-activated photocatalysis of methyl orange using carbonand lanthanum Co-doped Bi2O3-TiO2compo-site[J]. Journal of Alloys & Compounds, 2016,680:54-59.
[6] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al, The chemistry and applications of metal-organic frameworks[J]. Science, 2013,1230444:1-12.
[7] 朱炜, 李庆, 张萍, 等. MOF-177吸附CO2、CH4的模拟研究[J]. 纺织高校基础科学学报, 2018,31(1):90-96.
ZHU Wei, LI Qing, ZHANG Ping, et al. Simulation study of the adsorption of CO2, CH4 by MOF-177[J]. Basic Sciences Journal of Textile Universities, 2018,31(1):90-96.
[8] DHAKSHINAMOORTHY A, LI Z, GARCIA H. Catalysis and photocatalysis by metal organic frame-works[J]. Chemical Society Reviews, 2018,47(22):8134-8172.
doi: 10.1039/c8cs00256h pmid: 30003212
[9] ZHANG H, LIU G, SHI L. Engineering coordination polymers for photocatalysis[J]. Nano Energy, 2016,22:149-168.
doi: 10.1016/j.nanoen.2016.01.029
[10] ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic frame-work (MOF)[J]. Chemistry-A European Journal, 2007,13:5106-5112.
doi: 10.1002/(ISSN)1521-3765
[11] YANG Q, XU Q, JIANG H. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017,46(15):4774-4808.
doi: 10.1039/c6cs00724d pmid: 28621344
[12] WANG C, LI J, LV X, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science, 2014,7(9):2831-2867.
[13] GIBSON E A, Dye-sensitized photocathodes for H2 evolution[J]. Chemical Society Reviews, 2017,46(20):6194-6209.
doi: 10.1039/c7cs00322f pmid: 28829067
[14] RAJPUT L, KIM D, LAH M S. Conformational control of ligands to create a finite metal-organic cluster and an extended metal-organic framework[J]. Cryst Eng Comm, 2013,15(2):259-26.
doi: 10.1039/C2CE26015H
[15] YUAN Y P, YIN L S, CAO S W, et al. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization[J]. Applied Catalysis B: Environmental, 2015,168(6):572-576.
[16] WANG Y B, HONG J D, ZHANG W, et al. Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization, Catalysis Science & Technology, 2013,3(7):1703-1711.
[17] LI Q, FAN Z L, ZHANG L H, et al. Boosting and tuning the visible photocatalytic degradation performances towards reactive blue 21 via dyes@MOF composites[J]. Journal of Solid State Chemistry, 2019,269(1):465-475.
doi: 10.1016/j.jssc.2018.10.025
[1] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[2] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[3] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
[4] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/ 水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[5] 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93.
[6] 陈冬芝, 杨晓刚, 陈艳霞, 刘琳, 陈彬, 崔科丛, 张勇. 亚麻废纱制备纤维素基絮凝材料及其混凝工业废水性能 [J]. 纺织学报, 2020, 41(01): 88-95.
[7] 王秋平, 毛志平, 钟毅, 徐红, 张琳萍. 平幅轧染中针织物形变对染色的影响[J]. 纺织学报, 2019, 40(11): 94-99.
[8] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[9] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[10] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84.
[11] 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
[12] 王阿明, 夏良君, 王运利. 活性红195在中性电解质溶液中的聚集行为[J]. 纺织学报, 2019, 40(04): 77-82.
[13] 张兰河, 张明爽, 高伟围, 李正, 贾艳萍, 高敏, 凌良雄. 铝酸钴/蜂窝陶瓷催化剂的制备及其在印染废水处理中的应用[J]. 纺织学报, 2019, 40(03): 125-132.
[14] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[15] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!