纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 170-177.doi: 10.13475/j.fzxb.20191103108

• 综合述评 • 上一篇    下一篇

淀粉纤维的成形及其载药控释研究进展

段方燕1, 王闻宇1(), 金欣2,3, 牛家嵘1, 林童1,4, 朱正涛1,5   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 材料科学与工程学院, 天津 300387
    3.天津工业大学 省部共建分离膜与膜过程国家重点实验室, 天津 300387
    4.迪肯大学 前沿纤维研究与创新中心, 澳大利亚 吉朗 VIC3216
    5.南达科他矿业理工学院, 美国 拉皮德城 SD57701
  • 收稿日期:2019-11-12 修回日期:2020-07-09 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 王闻宇
  • 作者简介:段方燕(1995—),女,硕士生。主要研究方向为生物医用纤维材料成形及应用。
  • 基金资助:
    国家自然科学基金项目(51573136)

Research progress in formation of starch fibers and their drug-loaded controlled-release

DUAN Fangyan1, WANG Wenyu1(), JIN Xin2,3, NIU Jiarong1, LIN Tong1,4, ZHU Zhengtao1,5   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    3. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
    4. Future Fibers Research and Innovation Center, Deakin University, GeelongVIC3216, Australian
    5. Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid CitySD57701, America
  • Received:2019-11-12 Revised:2020-07-09 Online:2020-10-15 Published:2020-10-27
  • Contact: WANG Wenyu

摘要:

为制备孔隙率高、比表面积大、药物释放性能可控的载药淀粉纳米纤维,促进其在载药外敷等生物医学领域中的应用,从淀粉纤维的成形及其载药控释2个方面进行综述。首先,系统介绍了近年来国内外关于淀粉纤维的制备方法与工艺特点。针对淀粉纤维的成形机制,详细阐述了改性淀粉基纤维、共混淀粉基纤维、纯淀粉纤维的发展进程、性能特点及研究进展;针对载药淀粉纳米纤维在药物释放过程出现初始爆发释放的问题,介绍了交联改性等方法对淀粉纳米纤维膜载药控释性能的影响。最后,对淀粉纳米纤维在载药外敷领域所面临的困难和挑战提出了应对策略,并对其未来的研究方向进行展望。

关键词: 淀粉纤维, 纳米纤维, 载药敷料, 控制释放, 生物医用纺织品

Abstract:

In order to prepare drug-loaded starch nanofibers with high porosity, large specific surface area and controllable drug release properties, and promote their application in biomedical fields such as drug-loaded dressings, this paper mainly reviewed on starch fibers formation and drug loading and controlled release of the starch fibers. The preparation methods and processing characteristics of starch fibers in recent researches were systematically introduced. In view of the formation of starch fibers, the development process, performance characteristics and research progress of modified starch-based fibers, blended starch-based fibers and pure starch fibers were introduced in details. Regarding the problem of initial burst release of drug-loaded starch nanofibers in the drug release process, the influence of cross-linking methods on controlled drug release performance of starch nanofibers membrane was reviewed. Finally, the countermeasures for the difficulties and challenges faced by starch nanofibers in drug-loaded external dressings were presented, and the future research directions were proposed.

Key words: starch fiber, nanofiber, drug-loaded dressing, controlled-release, biomedical textile

中图分类号: 

  • TB34

图1

聚合物浓度和分子缠结对纺丝液可纺性的影响示意图"

[1] GIRAM P S, SHITOLE A, NANDE S S, et al. Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous mats[J]. Materials Science & Engineering C:Materials for Biological Applications, 2018,92:526-539.
doi: 10.1016/j.msec.2018.06.031 pmid: 30184779
[2] MENDES A C, STEPHANSEN K, CHRONAKIS I S. Electrospinning of food proteins and polysaccharides[J]. Food Hydrocolloids, 2017,68:53-68.
doi: 10.1016/j.foodhyd.2016.10.022
[3] LIU G, GU Z, HONG Y, et al. Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications[J]. Journal of Controlled Release, 2017,252:95-107.
doi: 10.1016/j.jconrel.2017.03.016 pmid: 28284833
[4] ROZ A, CARVALHO A, GANDINI A, et al. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing[J]. Carbohydrate Polymers, 2006,63(3):417-424.
doi: 10.1016/j.carbpol.2005.09.017
[5] FU Z Q, WANG L J, ZOU H, et al. Studies on the starch-water interactions between partially gelatinized corn starch and water during gelatinization[J]. Carbohydrate Polymers, 2014,101:727-732.
doi: 10.1016/j.carbpol.2013.09.098
[6] MATVEEV Y I, VAN SOEST J J G, NIEMAN C, et al. The relationship between thermodynamic and structural properties of low and high amylose maize starches[J]. Carbohydrate Polymers, 2001,44(2):151-160.
doi: 10.1016/S0144-8617(00)00211-3
[7] MOHAMMADI NAFCHI A, MORADPOUR M, SAEIDI M, et al. Thermoplastic starches: properties, challenges, and prospects[J]. Starch - Starke, 2013,65(1/2):61-72.
doi: 10.1002/star.v65.1/2
[8] GOMES M E, SIKAVITSAS V I, BEHRAVESH E, et al. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds[J]. Journal of Biomedical Materials Research:Part A, 2003,67A(1):87-95.
[9] TUZLAKOGLU K, PASHKULEVA I, RODRIGUES M T, et al. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation[J]. Journal of Biomedical Materials Research:Part A, 2010,92(1):369-77.
doi: 10.1002/jbm.a.32358 pmid: 19191314
[10] LI X, CHEN H, YANG B. Centrifugally spun starch-based fibers from amylopectin rich starches[J]. Carbohydrate Polymers, 2016,137:459-465.
doi: 10.1016/j.carbpol.2015.10.079 pmid: 26686151
[11] JAITURONG P, SIRITHUNYALUG B, EITAYEAM S, et al. Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier[J]. Asian Journal of Pharmaceutical Sciences, 2018,13(3):239-247.
doi: 10.1016/j.ajps.2017.08.008 pmid: 32104397
[12] KOMUR B, BAYRAK F, EKREN N, et al. Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications[J]. Biomedical Engineering Online, 2017,16(1):40-52.
doi: 10.1186/s12938-017-0334-y pmid: 28356126
[13] MOAD G. Chemical modification of starch by reactive extrusion[J]. Progress in Polymer Science, 2011,36(2):218-237.
doi: 10.1016/j.progpolymsci.2010.11.002
[14] WANG H J, JIN X, WANG W Y, et al. Preparation and electrospinning of acidified-oxidized potato starch[J]. Advanced Materials Research, 2012, 535-537:2340-2344.
doi: 10.4028/www.scientific.net/AMR.535-537
[15] NAVARCHIAN A H, SHARAFI A, KERMANSHAHI R K. Biodegradation study of starch-graft-acrylonitrile copolymer[J]. Journal of Polymers and the Environment, 2012,21(1):233-244.
doi: 10.1007/s10924-012-0518-2
[16] HU Y, WANG Q, TANG M. Preparation and properties of starch-g-PLA/poly(vinyl alcohol) composite film[J]. Carbohydrate Polymers, 2013,96(2):384-8.
doi: 10.1016/j.carbpol.2013.04.011
[17] Al-KARAWI A J M, Al-DARAGI A H R. Preparation and using of acrylamide grafted starch as polymer drug carrier[J]. Carbohydrate Polymers, 2010,79(3):769-774.
doi: 10.1016/j.carbpol.2009.10.003
[18] SUN Z, LI M, JIN Z, et al. Starch-graft-polyacrylonitrile nanofibers by electrospinning[J]. International Journal of Biological Macromolecules, 2018,120:2552-2559.
doi: 10.1016/j.ijbiomac.2018.09.031 pmid: 30195609
[19] XU Y, MILADINOV V, HANNA M A. Synjournal and characterization of starch acetates with high substi-tution[J]. Cereal Chemistry Journal, 2004,81(6):735-740.
doi: 10.1094/CCHEM.2004.81.6.735
[20] ZHOU Q, WU J, ZHANG J, et al. Homogeneous synjournal of high-amylose starch acetates and their ultrafine fibers prepared by electrospinning[J]. Acta Polymerica Sinica, 2007 ( 7):685-688.
[21] XU W, YANG W, YANG Y. Electrospun starch acetate nanofibers: development, properties, and potential application in drug delivery[J]. Biotechnology Progress, 2009,25(6):1788-95.
doi: 10.1002/btpr.242 pmid: 19637387
[22] YANG J, JIN X, WANG W Y, et al. Synjournal of starch acetates and electrospinning[J]. Advanced Materials Research, 2013, 785-786:1031-1035.
doi: 10.4028/www.scientific.net/AMR.785-786
[23] XU W, YANG Y. Drug release and its relationship with kinetic and thermodynamic parameters of drug sorption onto starch acetate fibers[J]. Biotechnology Bioengineering, 2010,105(4):814-22.
doi: 10.1002/bit.22594 pmid: 19882717
[24] REDDY N, YANG Y. Preparation and properties of starch acetate fibers for potential tissue engineering applications[J]. Biotechnology Bioengineering, 2009,103(5):1016-22.
doi: 10.1002/bit.22331 pmid: 19360891
[25] YUSOF M R, SHAMSUDIN R, ABDULLAH Y, et al. Electrospinning of carboxymethyl starch/poly(L-lactide acid) composite nanofiber[J]. Polymers for Advanced Technologies, 2018,29(6):1843-1851.
doi: 10.1002/pat.v29.6
[26] GIRI DEV V R, HEMAMALINI T. Porous electrospun starch rich polycaprolactone blend nanofibers for severe hemorrhage[J]. International Journal of Biological Macromolecules, 2018,118:1276-1283.
doi: 10.1016/j.ijbiomac.2018.06.163 pmid: 29964114
[27] LIU Z, HE J H. Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning[J]. Thermal Science, 2014,18(5):1473-1475.
doi: 10.2298/TSCI1405473L
[28] LI X, LU Y, HOU T, et al. Centrifugally spun ultrafine starch/PEO fibres as release formulation for poorly water-soluble drugs[J]. Micro & Nano Letters, 2018,13(12):1688-1692.
[29] OKTAY B, BASTURK E, KAYAMAN-APOHAN N, et al. Highly porous starch/poly(ethylene-alt-maleic anhydride) composite nanofiber mesh[J]. Polymer Composites, 2013,34(8):1321-1324.
doi: 10.1002/pc.22545
[30] ZHANG H B, ZHU M, YOU R Q. Modified biopolymer scaffolds by co-axial electrospinning[J]. Polymer Composites, 2010, 160-162:1062-1066.
[31] AMINI M, ARASH HADDADI S, GHADERI S, et al. Preparation and characterization of PVDF/starch nanocomposite nanofibers using electrospinning method[J]. Materials Today: Proceedings, 2018,5(7):15613-15619.
doi: 10.1016/j.matpr.2018.04.170
[32] WANG Q, ZHANG N, HU X, et al. Chitosan/starch fibers and their properties for drug controlled release[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007,66(3):398-404.
doi: 10.1016/j.ejpb.2006.11.011 pmid: 17196808
[33] WANG Q, HU X, DU Y, et al. Alginate/starch blend fibers and their properties for drug controlled release[J]. Carbohydrate Polymers, 2010,82(3):842-847.
doi: 10.1016/j.carbpol.2010.06.004
[34] JUKOLA H, NIKKOLA L, GOMES M E, et al. Electrospun starch-polyeaprolactone nanofiber-based constructs for tissue engineering[J]. Multiscale and Functionally Graded Materials, 2008,973:971-974.
[35] JAITURONG P, SUTJARITTANGTHAM K, EITSSAYEAM S, et al. Preparation of glutinous rice starch nanofibers by electrospinning[J]. Advanced Materials Research, 2012,506:230-233.
doi: 10.4028/www.scientific.net/AMR.506
[36] STIJNMAN A C, BODNER I, TROMP R H. Electrospinning of food-grade polysaccharides[J]. Food Hydrocolloids, 2011,25(5):1393-1398.
doi: 10.1016/j.foodhyd.2011.01.005
[37] ABURTO J, ALRIC I, BORREDON E. Organic solvent-free transesterification of various starches with lauric acid methyl ester and triacyl glycerides[J]. Starch - Starke, 2005,57(3/4):145-152.
doi: 10.1002/(ISSN)1521-379X
[38] ABURTO J, ALRIC I, BORREDON E. Preparation of long-chain esters of starch using fatty acid chlorides in the absence of an organic solvent[J]. Starch-Starke, 1999,51(4):132-135.
doi: 10.1002/(ISSN)1521-379X
[39] LANCUSKI A, VASILYEV G, PUTAUX J L, et al. Rheological properties and electrospinnability of high-amylose starch in formic acid[J]. Biomacromolecules, 2015,16(8):2529-36.
doi: 10.1021/acs.biomac.5b00817 pmid: 26192477
[40] FONSECA L M, DA SILVA F T, ANTUNES M D, et al. Aging time of soluble potato starch solutions for ultrafine fibers formation by electrospinning[J]. Starch-Starke, 2018.DOI: 10.1002/star.201800089.
[41] FONSECA L M, DE OLIVEIRA J P, DE OLIVEIRA P D, et al. Electrospinning of native and anionic corn starch fibers with different amylose contents[J]. Food Research International, 2019,116:1318-1326.
doi: 10.1016/j.foodres.2018.10.021 pmid: 30716921
[42] MUKERJEA R, MUKERJEA R, ROBYTJ F. Controlled peeling of the surfaces of starch granules by gelatinization in aqueous dimethyl sulfoxide at selected temperatures[J]. Carbohydrate Research, 2006,341(6):757-65.
doi: 10.1016/j.carres.2006.01.025 pmid: 16472789
[43] COOREMAN F L, RENSBURG H V, DELCOUR J A. Pasting profiles and solubility of native and cross-linked corn starch in dimethyl sulfoxide-water mixtures[J]. Journal of Cereal Science, 1995,22(3):251-257.
doi: 10.1006/jcrs.1995.0061
[44] KONG L, ZIEGLER G R. Fabrication of pure starch fibers by electrospinning[J]. Food Hydrocolloids, 2014,36:20-25.
doi: 10.1016/j.foodhyd.2013.08.021
[45] KONG L, ZIEGLER G R. Role of molecular entanglements in starch fiber formation by electrospinning[J]. Biomacromolecules, 2012,13(8):2247-53.
doi: 10.1021/bm300396j
[46] CARDENAS W, GOMEZ-PACHON E Y, MUNOZ E, et al. Preparation of potato starch microfibers obtained by electro wet spinning[J]. IOP Conference Series: Materials Science and Engineering, 2016.DOI: 10.1088/1757-899X/138/1/012001.
doi: 10.1088/1757-899X/279/1/012021 pmid: 30197666
[47] WANG W, JIN X, ZHU Y, et al. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers[J]. Carbohydrate Polymers, 2016,140:356-61.
doi: 10.1016/j.carbpol.2015.12.061 pmid: 26876862
[48] LEE J H, YOU S, KWEON D K, et al. Dissolution behaviors of waxy maize amylopectin in aqueous-DMSO solutions containing NaCl and CaCl2[J]. Food Hydrocolloids, 2014,35:115-121.
doi: 10.1016/j.foodhyd.2013.05.003
[49] JACKSON D S. Solubility behavior of granular corn starches in methyl sulfoxide (DMSO) as measured by high performance size exclusion chromatography[J]. Starch - Starke, 1991,43(11):422-427.
doi: 10.1002/(ISSN)1521-379X
[50] WANG W, WANG H, JIN X, et al. Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers[J]. Polymer, 2018,153:643-652.
doi: 10.1016/j.polymer.2018.08.067
[51] TANG S, ZHAO Z, CHEN G, et al. Fabrication of ampicillin/starch/polymer composite nanofibers with controlled drug release properties by electrospinning[J]. Journal of Sol-Gel Science and Technology, 2015,77(3):594-603.
doi: 10.1007/s10971-015-3887-x
[52] KAPELKO M, ZIEBA T, MICHALSKI A, et al. Effect of cross-linking degree on selected properties of retrograded starch adipate[J]. Food Chemistry, 2015,167:124-30.
doi: 10.1016/j.foodchem.2014.06.096 pmid: 25148968
[53] ZHONG K, LIN Z T, ZHENG X L, et al. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers[J]. Carbohydrate Polymers, 2013,92(2):1367-76.
doi: 10.1016/j.carbpol.2012.10.030
[54] DAS K, RAY D, BANDYOPADHYAY N R, et al. Preparation and characterization of cross-linked starch/poly(vinyl alcohol) green films with low moisture absorption[J]. Industrial & Engineering Chemistry Research, 2010,49(5):2176-2185.
[55] LIU Z, JIANG M, BAI X, et al. Effect of postcrosslinking modification with glutaraldehyde on the properties of thermoplastic starch/poly(vinyl alcohol) blend films[J]. Journal of Applied Polymer Science, 2012,124(5):3774-3781.
doi: 10.1002/app.v124.5
[56] REDDY N, YANG Y. Citric acid cross-linking of starch films[J]. Food Chemistry, 2010,118(3):702-711.
doi: 10.1016/j.foodchem.2009.05.050
[57] SUN S, LIU P, JI N, et al. Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing[J]. Food Hydrocolloids, 2018,77:964-975.
doi: 10.1016/j.foodhyd.2017.11.046
[58] XU H, CANISAG H, MU B, et al. Robust and flexible films from 100% starch cross-linked by biobased disaccharide derivative[J]. ACS Sustainable Chemistry & Engineering, 2015,3(11):2631-2639.
[59] LI X, HOU T, LU Y, et al. Citric acid cross-linking of centrifugally spun starch-based fibres[J]. Micro & Nano Letters, 2017,12(9):693-696.
[60] WAGHMARE V S, WADKE P R, DYAWANAPELLY S, et al. Starch based nanofibrous scaffolds for wound healing applications[J]. Bioactive Materials, 2018,3(3):255-266.
doi: 10.1016/j.bioactmat.2017.11.006 pmid: 29744465
[61] WADKE P, CHHABRA R, JAIN R, et al. Silver-embedded starch-based nanofibrous mats for soft tissue engineering[J]. Surfaces and Interfaces, 2017,8:137-146.
doi: 10.1016/j.surfin.2017.05.008
[1] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[2] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[3] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[4] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[5] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[6] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[7] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[8] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[9] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[10] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[11] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[12] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[13] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[14] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[15] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!