纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 73-80.doi: 10.13475/j.fzxb.20191204208

• 纺织工程 • 上一篇    下一篇

用光谱成像技术与分光光度法测量织物颜色的比较分析

裘柯槟1, 陈维国1,2(), 周华2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 上虞工业技术研究院有限公司, 浙江 绍兴 312300
  • 收稿日期:2019-12-18 修回日期:2020-08-04 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 陈维国
  • 作者简介:裘柯槟(1993—),男,博士生。主要研究方向为纺织品颜色测量技术。

Comparison of spectral imaging and spectrophotometry in fabric color measurement

QIU Kebin1, CHEN Weiguo1,2(), ZHOU Hua2   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Shangyu Industrial Technology Research Institute Co., Ltd., Zhejiang Sci-Tech University, Shaoxing, Zhejiang 312300, China
  • Received:2019-12-18 Revised:2020-08-04 Online:2020-11-15 Published:2020-11-26
  • Contact: CHEN Weiguo

摘要:

针对分光光度法与光谱成像技术测量相同织物颜色结果存在差异的问题,选用Datacolor 600型分光光度计、Datacolor Spectravision多光谱成像系统和HIS高光谱成像系统,分别对同一套单色全棉针织物进行测量,探讨了3种仪器测得的颜色参数和光谱反射率差异的原因及规律。通过计算不同仪器间的色差和指数光谱相似性,采用皮尔逊相关系数进行数据分析。研究结果表明,HIS高光谱成像系统重复性好,重复测量的平均色差为0.154;3种仪器测得的光谱反射率具有强相似性;相较于Spectravision多光谱成像系统,HIS高光谱成像系统的颜色结果更接近于分光光度计;Spectravision多光谱成像系统的有效像元尺寸更小,织物纹理对颜色结果影响较大,Spectravision多光谱成像系统测量的明度偏低;HIS高光谱成像系统的有效像元大小与相机工作距离成正比,适用范围更广。

关键词: 织物, 颜色测量, 光谱成像, 分光光度法, 色差, 光谱反射率

Abstract:

In order to address the problem in color difference between spectrophotometry and spectral imaging when measuring the same fabric, Datacolor 600 spectrophotometer, Datacolor Spectravision and hyperspectral imaging system HIS were chosen to measure the same set of monochromatic cotton knitted fabrics. The reasons and mechanisms for the difference in color and in spectral reflectance measured by the three instruments were discussed. The color difference and spectral similarity between different instruments were calculated, and the data were analyzed by Pearson correlation coefficient method. The results show that HIS has good repeatability with the average color difference being 0.154. The spectral reflectance measured by the three instruments have strong similarity. Compared with Spectravision, the chromatic value of HIS is closer to the spectrophotometer. Spatial feature information is the main factor affecting the color and spectral reflectance. The pixel size of Spectravision are smaller, and Spectravision has a lower brightness due to the influence of shadow of yarns and fabric texture. The pixel size of HIS are proportional to the distance between the camera and the specimen, and HIS is applicable to a broader range.

Key words: fabric, color measurement, spectral imaging, spectrophotometry, color difference, spectral reflectance

中图分类号: 

  • TS101.9

图1

光谱成像技术的图像采集方法"

图2

高光谱成像系统结构"

表1

素色棉针织物颜色参数"

样品编号 颜色 L* a* b* c h
1# 39.28 14.32 20.28 24.83 54.78
2# 深棕 20.21 13.23 6.84 14.89 27.34
3# 35.86 -1.84 -38.73 37.94 270.49
4# 深蓝 23.18 11.07 -33.92 35.68 288.07
5# 88.60 1.12 10.86 10.92 84.12
6# 24.40 17.46 -28.56 33.47 301.44
7# 绿 44.43 -42.49 17.89 44.91 156.16
8# 73.84 21.58 77.50 80.45 74.44
9# 橘黄 52.46 55.99 52.23 76.56 43.01
10# 38.25 55.14 31.86 63.68 30.02
11# 深红 28.09 43.45 -1.84 43.49 357.58
12# 12.58 0.54 -1.18 1.3 294.58
13# 21.51 -1.12 -5.00 5.12 257.37

表2

不同仪器的色差比较"

样品编号 Spectravision 与 Datacolor 600对比 HIS 与 Datacolor 600对比
ΔE00 ΔL Δc Δh ΔE00 ΔL Δc Δh
1# 0.925 -0.437 0.649 -0.493 0.655 -0.188 0.109 -0.618
2# 1.788 -0.516 1.655 -0.440 1.211 -0.312 -1.080 -0.449
3# 0.616 -0.490 0.297 0.569 0.396 -0.323 0.266 0.377
4# 1.074 -0.512 0.498 1.194 0.484 -0.201 -0.589 -0.310
5# 3.618 -1.436 -2.930 1.563 2.272 1.012 1.164 1.667
6# 1.090 -0.546 0.559 0.931 0.673 -0.433 -0.537 -0.220
7# 0.227 -0.215 0.065 -0.031 0.441 -0.234 0.227 0.298
8# 2.053 -0.916 -0.564 1.748 1.955 1.031 1.366 -0.946
9# 0.937 -0.502 -0.393 0.686 1.402 0.714 1.103 0.487
10# 0.574 -0.470 0.177 0.278 0.985 0.529 0.798 0.231
11# 0.707 -0.529 0.459 -0.099 0.641 -0.153 0.029 0.621
12# 3.502 -0.804 2.935 1.734 0.758 -0.262 0.125 -0.700
13# 2.528 -0.547 0.123 2.465 0.486 -0.385 0.139 -0.262
最小值 0.227 0.436 0.177 0.031 0.396 0.153 0.029 0.220
最大值 3.618 1.436 2.935 2.465 2.272 1.031 1.366 1.667
平均值 1.510 0.609 0.870 0.941 0.951 0.444 0.579 0.553

图3

Spectravision与HIS采集的织物图像"

表3

不同仪器间指数光谱角相似性结果"

样品编号 Spectravision与
Datacolor 600对比
HIS与
Datacolor 600对比
1# 0.973 0.916
2# 0.950 0.912
3# 0.974 0.981
4# 0.959 0.969
5# 0.951 0.968
6# 0.958 0.948
7# 0.979 0.983
8# 0.968 0.966
9# 0.951 0.961
10# 0.957 0.962
11# 0.962 0.946
12# 0.897 0.940
13# 0.935 0.921

图4

用Datacolor 600型分光光度计和Spectravision 测得的样品反射率曲线"

[1] SENTHILKUMAR M, SELVAKUMAR N, SHAMEY R. The effect of humidity, fabric surface geometry and dye type on the colour of cotton fabrics dyed with a select range of anionic dyes[J]. Dyes and Pigments, 2011,90(3):225-232.
doi: 10.1016/j.dyepig.2010.12.015
[2] AKGUN M, BECERIR B, ALPAY H R. Effect of sample layer numbers and fabric constructional parameters on colour strength, colour difference and colour matching properties of polyester woven fabrics[J]. Journal of The Textile Institute, 2017,108(1):102-109.
doi: 10.1080/00405000.2016.1159165
[3] MALM V, STRȦȦT M, WALKENSTRÖM P. Effects of surface structure and substrate color on color differences in textile coatings containing effect pigments[J]. Textile Research Journal, 2014,84(2):125-139.
doi: 10.1177/0040517513485626
[4] MATUSIAK M. Digieye application in cotton colour measurement[J]. Autex Research Journal, 2015,15(2):77-86.
doi: 10.2478/aut-2014-0036
[5] MATUSIAK M, WALAWSKA A, SYBILSKA W. Comparison of spectrophotometric and digieye colour measurements of woven fabrics[J]. Tekstil Ve Konfeksiyon, 2017,27(1):53-59.
[6] 李启正, 金肖克, 张声诚, 等. 数码测色法在织物颜色评价中的应用[J]. 印染, 2014,40(17):17-22.
LI Qizheng, JIN Xiaoke, ZHANG Shengcheng, et al. Application of digital color measuring methods to color evaluation of textiles[J]. China Dyeing & Finishing, 2014,40(17):17-22.
[7] VILASECA M, SCHAEL B, DELPUEYO X, et al. Repeatability, reproducibility, and accuracy of a novel pushbroom hyperspectral system[J]. Color Research & Application, 2014,39(6):549-558.
[8] 金肖克, 田伟, 朱炜婧, 等. 基于高光谱成像系统的纺织品成分定性鉴别[J]. 纺织学报, 2018,39(10):50-57.
JIN Xiaoke, TIAN Wei, ZHU Weijing, et al. Qualitative identification of textile chemical composition based on hyperspectral imaging system[J]. Journal of Textile Research, 2018,39(10):50-57.
[9] LUO L, SHEN H L, SHAO S J, et al. Color specification of a single strand of yarn from a multispectral image[J]. Color Research and Application, 2016,41(5):500-512.
doi: 10.1002/col.v41.5
[10] 王魏. 多光谱成像系统的自动调焦和纱线颜色测量方法[D]. 杭州: 浙江大学, 2014: 2-3.
WANG Wei. Auto-focus and yarn color measurement methods in multi-spectral imaging system[D]. Hangzhou: Zhejiang University, 2014: 2-3.
[11] 忻浩忠, 邵思杰, 沈会良. 多光谱成像颜色测量系统及其成像信号处理方法: 201010539818.2[P]. 2012-05-23.
XIN Haozhong, SHAO Sijie, SHEN Huiliang. Multispectral imaging color measurement system and imaging signal processing method: 201010539818.2[P]. 2012-05-23.
[12] LUO L, SHEN HL, SHAO SJ, et al. A novel method for weft and warp yarn segmentation in multicolour yarn-dyed fabric images[J]. Coloration Technology, 2015,131(2):165-171.
doi: 10.1111/cote.2015.131.issue-2
[13] 张盼. 基于高光谱成像的单色织物颜色测量方法研究[D]. 杭州: 浙江理工大学, 2018: 40-47.
ZHANG Pan. Study of measurement method for yarn-dyed fabric solid color based on hyper-spectral imaging[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 40-47.
[14] ZHANG J, WU J, HU X, et al. Multi-color measurement of printed fabric using the hyperspectral imaging system[J]. Textile Research Journal, 2020,90(9-10):1024-1037.
doi: 10.1177/0040517519883953
[15] LUO L, SHEN H L, SHAO S J, et al. A multispectral imaging approach to colour measurement and colour matching of single yarns without winding[J]. Coloration Technology, 2015,131(4):342-351.
doi: 10.1111/cote.2015.131.issue-4
[16] FOSTER D H, AMANO K. Hyperspectral imaging in color vision research: tutorial[J]. Optical Society of America, 2019,36(4):606-627.
doi: 10.1364/JOSAA.36.000606
[17] 赵春晖, 田明华, 李佳伟. 光谱相似性度量方法研究进展[J]. 哈尔滨工程大学学报, 2017,38(8):1179-1189.
ZHAO Chunhui, TIAN Minghua, LI Jiawei. Research progress on spectral similarity metrics[J]. Journal of Harbin Engineering University, 2017,38(8):1179-1189.
[18] GEWALI U B, MONTEIRO S T. Spectral angle based unary energy functions for spatial-spectral hyperspectral classification using markov random fields [C]//2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Los Angeles: IEEE, 2016: 1-6.
[19] ZWINKELS J C. Colour-measuring instruments and their calibration[J]. Displays, 1996,16(4):163-171.
doi: 10.1016/0141-9382(96)01010-4
[20] 袁理, 王丹书, 谷迁, 等. 基于光谱泛相似测度的色纺纱线与织物间呈色规律[J]. 纺织学报, 2019,40(2):30-37.
YUAN Li, WANG Danshu, GU Qian, et al. Coloration rules between colored spun yarns and its fabrics based on spectral pan-similarity measure[J]. Journal of Textile Research, 2019,40(2):30-37.
[1] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[2] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[3] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[4] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[5] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[6] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
[7] 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72.
[8] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/ 封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[9] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12 芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
[10] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf / SiC 复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[11] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[12] 刘晓涵, 田苗, 王云仪, 李俊. 阻燃织物老化对其拉伸强力影响的研究进展[J]. 纺织学报, 2020, 41(11): 181-188.
[13] 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/ 溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115.
[14] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[15] 余志才, 钟跃崎, Rong Gong, 谢昊洋, Hussain Azmat. 基于三维悬垂模型和织物面密度的织物匹配[J]. 纺织学报, 2020, 41(10): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!