纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 48-52.doi: 10.13475/j.fzxb.20200400805

• 纺织工程 • 上一篇    下一篇

喷气涡流纺纱线热黏合增强工艺优化与机制

陈玉香1,2, 虞美雅1, 董正梅3, 缪璐璐1, 林燕燕1, 邹专勇1()   

  1. 1.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    2.浙江理工大学纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    3.喜临门家具股份有限公司, 浙江 绍兴 312000
  • 收稿日期:2020-04-03 修回日期:2020-08-19 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 邹专勇
  • 作者简介:陈玉香(1995—),女,硕士生。主要研究方向为喷气涡流纺纱线产品开发。
  • 基金资助:
    国家自然科学基金资助项目(51573095);国家级大学生创新创业训练计划项目(201910349028)

Enhanced process optimization and mechanism analysis of thermal adhesion for air jet vortex spun yarn

CHEN Yuxiang1,2, YU Meiya1, DONG Zhengmei3, MIAO Lulu1, LIN Yanyan1, ZOU Zhuanyong1()   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology in Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Xilinmen Furniture Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2020-04-03 Revised:2020-08-19 Online:2020-11-15 Published:2020-11-26
  • Contact: ZOU Zhuanyong

摘要:

为探究喷气涡流纺纱线强伸性能提高的有效途径,基于Box-Behnken Design响应面设计方法,研究热处理温度、热处理速度和牵伸倍数对粘胶/低熔点涤纶喷气涡流纱断裂强力及断裂伸长率的影响规律,确定最佳热处理工艺,分析热黏合增强喷气涡流纱的机制。结果表明:喷气涡流纱断裂强力受热处理温度、热处理速度、牵伸倍数、热处理速度二次项、热处理速度和牵伸倍数交互项显著影响;断裂伸长率受热处理温度、热处理速度和二者的交互项显著影响,牵伸倍数影响不显著;响应面优化获得的最佳热处理工艺为热处理温度193 ℃,热处理速度90 m/min,牵伸倍数1.00。优化后纱线断裂强力较原纱提高10.7%,断裂伸长率提高2.8%;低熔点涤纶纤维受热产生挤压变形、点状和团块状热黏合是实现喷气涡流纱热黏合增强的关键。

关键词: 喷气涡流纱, 强伸性能, 热黏合工艺, 响应面分析

Abstract:

In order to explore effective ways to improve the strength and elongation properties of air jet vortex spun yarn, the effect of the heat treatment temperature, heat treatment speed and draw ratio on the breaking strength and elongation of viscose / low melting point polyester air jet vortex spun yarn was studied based on the Box-Behnken Design response surface method. The optimal heat treatment process parameters were determined and the mechanism of thermal adhesion to reinforce the air jet vortex spun yarn was explored. The results show that the heat treatment temperature, heat treatment speed, draw ratio, the secondary term of heat treatment speed, heat treatment speed and draw ratio interaction terms have obvious influence on the yarn breaking strength. The elongation at break is significantly affected by the heat treatment temperature and heat treatment speed, while the influence of draw ratio is not obvious. The best parameter values of heat treatment process obtained through the optimization are heat treatment temperature 193 ℃, heat treatment speed 90 m/min, draw ratio 1.00. The yarn breaking strength is increased by 10.7% compared with the original yarn, and the elongation is increased by 2.8% after optimization. Furthermore, it is found that the heating deformation, point-like and agglomerated heat-bonding of low-melting polyester fibers are the key to achieve thermal bonding enhancement of air jet vortex spun yarn.

Key words: air jet vortex spinning, strength and elongation property, thermal adhesion process, response surface methodology

中图分类号: 

  • TS131

表1

纱线热处理工艺因子水平表"

水平 热处理温度
x1/℃
热处理速度
x2/(m·min-1)
牵伸倍数
x3
-1 120 10 1.00
0 160 50 1.06
1 200 90 1.12

表2

BBD响应面设计方案与试验结果"

运行序  x1  x2  x3 断裂强力
Y1/cN
断裂伸长率
Y2/%
1 -1 -1 0 272.867 5 10.648
2 1 -1 0 274.894 7 9.470
3 -1 1 0 256.266 1 11.234
4 1 1 0 262.903 3 10.964
5 -1 0 -1 257.166 4 11.273
6 1 0 -1 267.234 8 10.716
7 -1 0 1 251.401 3 10.667
8 1 0 1 260.337 3 10.492
9 0 -1 -1 270.825 5 10.587
10 0 1 -1 264.601 9 11.209
11 0 -1 1 276.272 4 10.153
12 0 1 1 254.506 0 11.303
13 0 0 0 258.390 0 10.837
14 0 0 0 263.241 2 10.982
15 0 0 0 261.864 4 11.209

表3

不同应变量的响应面二次模型回归分析"

方差来源 断裂强力Y1 断裂伸长率Y2
F P F P
x1 18.16 0.002 16.82 0.003
x2 75.96 0.000 52.51 0.000
x3 7.11 0.026 4.84 0.059
x12 5.50 0.047
x22 31.76 0.000 4.32 0.071
x1x2 5.84 0.042
x2x3 11.46 0.008
回归模型 28.89 0.000 14.86 0.001
失拟项 0.80 0.657 1.01 0.576

图1

热处理工艺对响应值纱线断裂强力的等高线图"

图2

热处理工艺对响应值纱线断裂伸长率的等高线图"

表4

多响应值优化"

类别 断裂强力Y1/cN 断裂伸长率Y2/%
范围 >250 >9
目标 274.9 11.3
权重 50 50

表5

热处理工艺优化与验证"

x1/℃ x2/
(m·min-1)
x3 断裂强力Y1/cN 断裂伸长率Y2/%
预测 实测 预测 实测
0.818 2 1 -1 268.45 275.55 11.25 11.37

图3

热处理前后喷气涡流纱中低熔点涤纶形态图"

[1] ERDUMLU N, OZIPEK B, OZTUNA A S, et al. Investigation of vortex spun yarn properties in comparison with conventional ring and open-end rotor spun yarns[J]. Textile Research Journal, 2009,79(7):585-595.
doi: 10.1177/0040517508093590
[2] ORTLEK H G, ONAL L. Comparative study on the characteristics of knitted fabrics made of vortex-spun viscose yarns[J]. Fibers and Polymers, 2008,9(2):194-199.
doi: 10.1007/s12221-008-0031-3
[3] BECEREN Y, NERGIS B U. Comparison of the effects of cotton yarns produced by new, modified and conventional spinning systems on yarn and knitted fabric performance[J]. Textile Research Journal, 2008,78(4):297-303.
doi: 10.1177/0040517507084434
[4] 裴泽光, 俞兆昇, 郁崇文. 影响纯涤纶喷气涡流纱强度的因素[J]. 纺织学报, 2008,29(12):22-24.
PEI Zeguang, YU Zhaosheng, YU Chongwen. Effect of parameters on tenacity of polyester MVS yarn[J]. Journal of Textile Research, 2008,29(12):22-24.
[5] ORTLEK H G, ULKU S. Effect of some variables on properties of 100% cotton vortex spun yarn[J]. Textile Research Journal, 2005,75(6):458-461.
doi: 10.1177/0040517505053835
[6] 袁龙超, 李新荣, 郭臻, 等. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018,39(1):169-178.
YUAN Longchao, LI Xinrong, GUO Zhen, et al. Research progress on the influence of jet swirl swirl nozzle structure on flow field[J]. Journal of Textile Research, 2018,39(1):169-178.
[7] 林燕燕, 邹专勇, 陈玉香, 等. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019,40(2):58-62.
LIN Yanyan, ZOU Zhuanyong, CHEN Yuxiang, et al. Hot adhesion reinforcement technology of jet vortex spinning yarn[J]. Journal of Textile Research, 2019,40(2):58-62.
[8] 邹专勇. 喷气涡流纺成纱工艺对竹浆纤维色纺纱性能的影响[J]. 纺织学报, 2014,35(2):23-28,38.
ZOU Zhuanyong. Influence of yarn formation process on properties of bamboo pulp fiber colored spun yarn using air jet vortex spinning[J]. Journal of Textile Research, 2014,35(2):23-28,38.
[9] 邹专勇, 程隆棣, 俞建勇, 等. 喷气涡流纱中纤维的空间轨迹研究[J]. 纺织学报, 2008,29(10):25-28,33.
ZOU Zhuanyong, CHENG Longdi, YU Jianyong, et al. Fiber spatial configuration in air jet vortex spun yarn[J]. Journal of Textile Research, 2008,29(10):25-28,33.
[10] ZHENG S, ZOU Z, SHEN W, et al. A study of the fiber distribution in yarn cross section for vortex-spun yarn[J]. Textile Research Journal, 2012,82(15):1579-1586.
doi: 10.1177/0040517511431315
[1] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[2] 邹专勇. 喷气涡流纺成纱工艺对竹浆纤维色纺纱性能的影响[J]. 纺织学报, 2014, 35(2): 23-0.
[3] 赵玉萍, 张娟, 郭雅琳, 赵明. 基于响应面分析法的超声波洗涤羽毛纤维工艺条件优化[J]. 纺织学报, 2012, 33(7): 24-30.
[4] 黄莉茜;刘水莲;蒋耀兴;王善元. 绢丝/锦纶长丝sirofil复合纱成纱性能[J]. 纺织学报, 2006, 27(4): 66-69.
[5] 顾闻彦;葛明桥;袁敏发;李永贵. 圆盘式旋流纺的加捻气压对成纱的影响[J]. 纺织学报, 2005, 26(3): 41-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!