纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 59-65.doi: 10.13475/j.fzxb.20200101408

• 纺织工程 • 上一篇    下一篇

层间间距对平纹双层结构靶体抗侵彻性能的影响

周熠1,2, 李杭1, 严祥邦1, 梁耀庭1, 张中威2()   

  1. 1.武汉纺织大学 纺织纤维及制品教育部重点实验室, 湖北 武汉 430200
    2.陆军工程大学 爆炸冲击防灾减灾国家重点实验室, 江苏 南京 210007
  • 收稿日期:2020-01-09 修回日期:2020-06-05 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 张中威
  • 作者简介:周熠(1987—),男,副教授,博士。主要研究方向为弹道防护材料及其力学分析。

Influence of layer spacing on ballistic performance of double-plied plain fabric target

ZHOU Yi1,2, LI Hang1, YAN Xiangbang1, LIANG Yaoting1, ZHANG Zhongwei2()   

  1. 1. Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University,Wuhan, Hubei 430200, China
    2. State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, The Army Engineering University of PLA, Nanjing, Jiangsu 210007, China
  • Received:2020-01-09 Revised:2020-06-05 Online:2020-11-15 Published:2020-11-26
  • Contact: ZHANG Zhongwei

摘要:

为满足软体防弹叠层增强减重的需求和优化柔性叠层防弹材料的结构设计,通过增加层间间距,改变靶体迎弹面和背弹面的动态响应,提升其抗侵彻性能。叠层的吸能性能通过弹丸侵彻实验进行表征,且通过有限元模型分析叠层结构的吸能机制。弹丸侵彻实验结果表明:靶体的吸能效果随层间间距变宽先下降后上升,当间距到达一个临界值后,吸收的能量将停止增长;有限元模型的仿真数据与实验数据的变化趋势相吻合,表明靶体迎弹面横向形变的宽度和应力分布的面积随间距的变宽而增大,背弹面应力分布的强度随间距的变宽而减弱。

关键词: 柔性防弹服, 防弹材料, 层间间距, 抗侵彻性能, 弹丸侵彻

Abstract:

In order to meet the requirements of performance improvement and weight reduction of flexible ballistic panels, and to optimize the structure design of flexible multi-ply ballistic materials, spacing was incorporated between the adjacent layers to study the dynamic response of the front and back layers. This research used ballistic penetration test to characterize the energy absorption capacity of fabric panels, and also made use of a finite element model to analyze the mechanisms of energy absorption. It was found from the ballistic tests that the energy absorption of the target decreases and then increases as the layer spacing widens. When a critical value is reached, the energy absorption stops increasing. The numerical predictions obtained from finite element modeling share similar trend with the experimental results. It was found that the transverse deflection and the stress distribution area of the front layer increase as the layer spacing becomes widened, whereas the magnitude of stress distribution decreases on the rear layer.

Key words: flexible body armor, ballistic material, layer spacing, anti-penetration performance, ballistic penetration

中图分类号: 

  • TS131

图1

弹丸冲击实验设备示意图"

图2

弹丸与夹具示意图"

图3

长丝束及平纹织物与弹丸的有限元模型"

图4

单层结构和双层结构实验及有限元建模入射速度-出射速度曲线"

图5

靶体能量吸收随层间间距变化规律"

图6

被弹丸贯穿后的芳纶平纹织物"

图7

靶体迎弹面织物断裂横向形变及其应力云图"

图8

靶体背弹面织物断裂横向形变及其应力云图"

图9

靶体能量吸收随时间变化规律"

图10

靶体迎弹面织物应变能和动能随时间的变化"

图11

靶体背弹面织物应变能和动能随时间的变化"

图12

弹丸冲击靶体示意图"

[1] 乔咏梅, 余铜辉. 软质防弹衣结构分析与性能研究[J]. 警察技术, 2017(3):81-84.
QIAO Yongmei, YU Tonghui. Structural analysis and performance study of soft body armor[J]. Police Technology, 2017(3):81-84.
[2] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019,40(6):158-164.
CHEN Xiaogang. Review of research on textile-based bulletproof and puncture-resistant materials[J]. Journal of Textile Research, 2019,40(6):158-164.
[3] CHEESEMAN B A, BOGGEI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structure, 2003,61:161-173.
[4] 顾冰芳, 龚烈航, 徐国跃. Kevlar纤维叠层织物防弹机理和性能研究[J]. 南京理工大学学报, 2007,31(5):638-642.
GU Bingfang, GONG Liehang, XU Guoyue. Study on bulletproof mechanism and performance of Kevlar fiber laminated fabric[J]. Journal of Nanjing University of Science and Technology, 2007,31(5):638-642.
[5] LEE B L, SONG J W, WARD J E. Failure of spectra polyethylene fibre-reinforced composites under ballistic impact loading[J]. Journal of Composite Materials, 1994,28:1202-1225.
[6] CHEN X, ZHU F, WELLS G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B:Engineering, 2012,45(1):1508-1514.
[7] 周熠, 陈晓钢, 张尚勇, 等. 超高分子量聚乙烯平纹织物在柔性防弹服中的应用[J]. 纺织学报, 2016,37(4):60-64.
ZHOU Yi, CHEN Xiaogang, ZHANG Shangyong, et al. Application of ultra-high molecular-weight polyethylene plain weave on soft body armour[J]. Journal of Textile Research, 2016,37(4):60-64.
[8] CHEN Xiaogang, ZHOU Yi, WELLS G. Numerical and experimental investigations into ballistic performance of hybrid fabric panels[J]. Composites Part B:Engineering, 2014,58:35-42.
[9] YANG Yanfei, CHEN Xiaogang. Study of energy absorption and failure modes of constituent layers in body armour panels[J]. Composites: Part B-Engineering, 2016,98:250-259.
[10] GUO Zherui, CHEN Weinong, ZHENG J. A semi-empirical design parameter for determining the inelastic strike-face mass fraction of soft armor targets[J]. International Journal of Impact Engineering, 2019,125:83-92.
[11] CUNNIFF P M. An analysis of the system effects in woven fabrics under ballistic impact[J]. Textile Research Journal, 1996,66(1):45-58.
[12] PORWAL K P, PHOENIX S L. Effects of layer stacking order on the V 50 velocity of a two-layered hybrid armor system[J]. Journal of Mechanics of Materials and Structures, 2008,3(4):627-639.
[13] ZHOU Yi, HOU Jun, GONG Xiaozhou, et al. Hybrid panels from woven Kevlar® and Dyneema® fabrics against ballistic impact with wearing flexibility[J]. Journal of The Textile Institute, 2017,15:1027-1034.
[14] WANG Ying, CHEN Xiaogang, YOUNG R, et al. An experimental study of the effect of ply orientation on ballistic impact performance of multi-ply fabric panels[J]. Textile Research Journal, 2016.DOI: 10.1177/0040517514566110.
doi: 10.1080/0002889758507210 pmid: 1111270
[15] WANG Ying, CHEN Xiaogang, YOUNG R, et al. A numerical study of ply orientation on ballistic impact resistance of multi-ply fabric panels[J]. Composites Part B:Engineering, 2015,68:259-265.
[16] PORWAL K P, PHOENIX S L. Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor[J]. International Journal of Fracture, 2005,135(1):217-249.
[17] ZHOU Yi, GONG Xiaozhou, ZHANG Shangyong, et al. A numerical investigation into the influence of layer space on panel ballistic performance[J]. Fibers and Polymers, 2015,16(12):2663-2669.
[18] SEBASTAIN S, BAILEY A I, BRISCOE B J, et al. Extensions, displacements and forces associated with pulling a single yarn from a fabric[J]. Journal of Physics D:Applied Physics, 1987,20(1):130.
[19] O'MASTA M R, CRAYON D H, DESSHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates[J]. International Journal of Impact Engineering, 2015,86:249-264.
[20] LEE B L, WALSH T F, WON S T, et al. Penetration failure mechanisms of armor-grade fiber composites under impact[J]. Journal of Composite Materials, 2001,35(18):1605-1633.
[1] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(06): 158-164.
[2] 周国泰;施楣梧;徐闻. 高强高模PVA纤维的研究现状及在防弹复合材料中的应用[J]. 纺织学报, 1999, 20(03): 50-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!