纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 189-196.doi: 10.13475/j.fzxb.20200200408
• 综合述评 • 上一篇
YU Yucong1,2, SHI Xiaolong2, LIU Lin2, YAO Juming2()
摘要:
随着工业含油废水对全球水环境的持续破坏,应用于油水分离领域的超润湿纺织品成为近年来的研究热点。为促进超润湿纺织品的开发和应用,综述了近期国内外超润湿纺织品分离净化含油废水的研究进展,并对超疏水性/超亲油性、超亲水性/水下超疏油性表面的构建方法进行分类介绍,并分析了单一润湿性材料在实际应用中的局限性。为应对含有乳液、表面活性剂、染料和金属离子等杂质的含油污水,阐述了新型的Janus材料、智能响应材料以及多功能集成的油水分离材料的废水处理机制,分析了目前新型油水分离材料的研究进展和挑战。指出,随着含油污水的成分日益复杂,收集和净化难度增大,开发绿色、可持续和多功能的复合型超润湿纺织品具有重要的研究意义。
中图分类号:
[1] |
SCHROPE M. Oil spill: deep wounds[J]. Nature, 2011,472(7342):152-154.
doi: 10.1038/472152a pmid: 21490648 |
[2] | RONG J, QIU F, ZHANG T, et al. A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption[J]. Chemical Engineering Journal, 2017,322:397-407. |
[3] | YUAN D, TAO Z, QING G, et al. Recyclable biomass carbon@SiO2@MnO2 aerogel with hierarchical architectures for fast and selective oil-water separa-tion[J]. Chemical Engineering Journal, 2018,351:622-630. |
[4] | PADAKI M, MURALI RS, ABDULLAH MS, et al. Membrane technology enhancement in oil-water separation: a review[J]. Desalination, 2015,357:197-207. |
[5] | LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applica-tions[J]. Journal of Materials Chemistry A, 2017,5(1):31-55. |
[6] | ZHOU H, GUO Z. Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications[J]. Journal of Materials Chemistry A, 2019,7(21):12921-12950. |
[7] |
LI L J, RONG L D, XU Z T, et al. Cellulosic sponges with pH responsive wettability for efficient oil-water separation[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116133.
doi: 10.1016/j.carbpol.2020.117565 pmid: 33483066 |
[8] |
BAOS Z, CHEN D, LI N, et al. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation[J]. Journal of Membrane Science, 2020. DOI: 10.1016/j.memsci.2019.117804.
pmid: 26207081 |
[9] |
DENG Y, HAN D, DENG Y, et al. Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.122391.
doi: 10.1016/j.cej.2020.126340 pmid: 32848507 |
[10] | ZHANG W, LI X, QU R, et al. Janus membrane decorated via a versatile immersion-spray route: controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria[J]. Journal of Materials Chemistry A, 2019,7(9):4941-4949. |
[11] | CHEN J, ZHOU Y, ZHOU C, et al. A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separa-tion[J]. Chemical Engineering Journal, 2019,370:1218-1227. |
[12] | CHENG Y, ZHU T, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019,355:290-298. |
[13] | JI W, WANG H, YAO Y, et al. Mg(OH)2 and PDMS-coated cotton fabrics for excellent oil/water separation and flame retardancy[J]. Cellulose, 2019,26(11):6879-6890. |
[14] | LI X P, CAO M, SHAN H T, et al. Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation[J]. Chemical Engineering Journal, 2019,358:1101-1113. |
[15] | 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020,41(4):106-111. |
TAN Lin, SHI Yidong, ZHOU Wenya. Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol[J]. Journal of Textile Research, 2020,41(4):106-111. | |
[16] |
ZHANG Z, WANG H, LIANG Y, et al. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function[J]. Scientific Reports, 2018,8:3869-3877.
doi: 10.1038/s41598-018-22241-9 pmid: 29497169 |
[17] | GONG X, WANG Y, ZENG H, et al. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation[J]. ACS Sustainable Chemistry & Engineering, 2019,7(13):11118-11128. |
[18] |
LIU Y N, QU R X, ZANG W F, et al. Lotus- and mussel-inspired PDA-PET/PTFE janus membrane: toward integrated separation of light and heavy oils from water[J]. Acs Applied Materials & Interfaces, 2019,11(22):20545-20556.
pmid: 31082194 |
[19] | ZHANG G W, JIA X Y, XING J L, et al. A facile and fast approach to coat various substrates with Poly(styrene-co-maleic anhydride) and polyethyleneimine for oil/water separation[J]. Industrial & Engineering Chemistry Research, 2019,58(42):19475-19485. |
[20] | RATHER A M, MANNA U. Stretchable and durable superhydrophobicity that acts both in air and under oil[J]. Journal of Materials Chemistry A, 2017,5(29):15208-15216. |
[21] |
REN J P, TAO F R, LIU L B, et al. A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2019.115807.
doi: 10.1016/j.carbpol.2020.117565 pmid: 33483066 |
[22] | CAO C Y, WANG F, LU M. Preparation of superhydrophobic CuS cotton fabric with photocatalytic and antibacterial activity for oil/water separation[J]. Materials Letters, 2020,260:4. |
[23] | XUE C H, GUO X J, ZHANG M M, et al. Fabrication of robust superhydrophobic surfaces by modification of chemically roughened fibers via thiol-ene click chemistry[J]. Journal of Materials Chemistry A, 2015,3(43):21797-21804. |
[24] | ZHAO P, QIN N, REN C L, et al. Surface modification of polyamide meshes and nonwoven fabrics by plasma etching and a PDA/cellulose coating for oil/water separation[J]. Applied Surface Science, 2019,481:883-891. |
[25] |
YANG M P, LIU W Q, LIANG L Y, et al. A mild strategy to construct superhydrophobic cotton with dual self-cleaning and oil-water separation abilities based on TiO2 and POSS via thiol-ene click reaction[J]. Cellulose, 2020,27:2847-2857.
doi: 10.1007/s10570-019-02963-3 |
[26] | LI H Q, LIANG T, LAI X J, et al. Vapor-liquid interfacial reaction to fabricate superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabric for oil/water separation[J]. Applied Surface Science, 2018,427:92-101. |
[27] | YANG M P, LIU W Q, JIANG C, et al. Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,570:172-181. |
[28] | XU B, DING Y, QU S, et al. Superamphiphobic cotton fabrics with enhanced stability[J]. Applied Surface Science, 2015,356:951-957. |
[29] |
YANG Y, GUO Z, HUANG W, et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric[J]. Applied Surface Science, 2020. DOI: 10.1016/j.apsusc.2019.144079.
doi: 10.1016/j.apsusc.2016.03.212 pmid: 27397949 |
[30] | ZHAN B, LIU Y, LI S Y, et al. Fabrication of superwetting Cu@Cu2O cubic film for oil/water emulsion separation and photocatalytic degradation[J]. Applied Surface Science, 2019,496:11. |
[31] | TRUPP F, TORASSO N, GRONDONA D, et al. Hierarchical selective membranes combining carbonaceous nanoparticles and commercial permeable substrates for oil/water separation[J]. Separation and Purification Technology, 2020,234:12. |
[32] | LI N, PRANANTYO D, KANG E T, et al. In situ self-assembled polyoxotitanate cages on flexible cellulosic substrates: multifunctional coating for hydrophobic, antibacterial, and UV-blocking applications[J]. Advanced Functional Materials, 2018,28(23):9. |
[33] | YUE C, LING L, XUE Z, et al. Filefish-inspired surface design for anisotropic underwater oleophobi-city[J]. Advanced Functional Materials, 2014,24(6):808-818. |
[34] | 张欢, 闫俊, 王晓武, 等. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019,40(7):103-107. |
ZHANG Huan, YAN Jun, WANG Xiaowu, et al. Application of low temperature plasma in surface modification of polyester fiber[J]. Journal of Textile Research, 2019,40(7):103-107. | |
[35] | SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016,506:60-70. |
[36] |
ZUO J H, GU Y H, WEI C, et al. Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions[J]. Journal of Membrane Science, 2020. DOI: 10.1016/j.memsci.2019.117475.
doi: 10.1016/j.memsci.2014.08.042 pmid: 26207081 |
[37] | LI X, ZHANG W, QU R, et al. Asymmetric superwetting configuration of Janus membranes based on thiol-ene clickable silane nanospheres enabling on-demand and energy-efficient oil-water remediation[J]. Journal of Materials Chemistry A, 2019,7(16), 10047-10057. |
[38] |
HONG S K, BAE S, JEON H, et al. Underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability[J]. Nanoscale, 2018,10:3037-3045.
doi: 10.1039/c7nr08199e pmid: 29376157 |
[39] |
CHENG Q, YE D, CHANG C, et al. Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation[J]. Journal of Membrane Science, 2017,525:1-8.
doi: 10.1016/j.memsci.2016.11.084 |
[40] |
LI S, HUANG J, CHEN Z, et al. Review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017,5(1):31-55.
doi: 10.1039/C6TA07984A |
[41] | ZHANG W, QU R, LI X, et al. A dual functional Janus membrane combining superwettability with electrostatic force for controllable anionic/cationic emulsion separation and in situ surfactant removal[J]. Journal of Materials Chemistry A, 2019,7(47):27156-27163. |
[42] | YUE X, ZHANG T, YANG D, et al. Janus ZnO-cellulose/MnO2 hybrid membranes with asymmetric wettability for highly-efficient emulsion separations[J]. Cellulose, 2018,25:5951-5965. |
[43] |
ZHANG W, LIU N, ZHANG Q, et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability[J]. Angewandte Chemie International Edition, 2018,57(20):5740-5745.
doi: 10.1002/anie.201801736 pmid: 29578276 |
[44] | CHE H, HUO M, PENG L, et al. CO2-responsive nanofibrous membranes with switchable oil/water wettability[J]. Angewandte Chemie (International Edition), 2015,54(31):8934-8938. |
[45] | LI W X, JU B Z, ZHANG S F. Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions[J]. Carbohydrate Polymers, 2020,229:10. |
[46] | WANG D C, YANG X G, YU H Y, et al. Smart nonwoven fabric with reversibly dual-stimuli responsive wettability for intelligent oil-water separation and pollutants removal[J]. Journal of Hazardous Materials, 2020,383:11. |
[47] | DENG Z Y, WANG W, MAO L H, et al. Versatile superhydrophobic and photocatalytic films generated from TiO2-SiO2@PDMS and their applications on fabrics[J]. Journal of Materials Chemistry A, 2014,2(12):4178-4184. |
[48] |
LI S, HUANG J, GE M, et al. Self-cleaning cotton: robust flower-like TiO2@cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation[J]. Advanced Materials Interfaces, 2015. DOI: 10.1002/admi.201500220.
doi: 10.1002/admi.201400158 pmid: 26900544 |
[49] |
ZHANG W, LU X, XIN Z, et al. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation[J]. Nanoscale, 2015,7(46):19476-19483.
doi: 10.1039/c5nr06425b pmid: 26530425 |
[50] |
MANNA J, GOSWAMI S, SHILPA N, et al. Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: application as self-cleaning flexible materials with visible-Light photocatalysis and antibacterial activities[J]. Acs Applied Materials & Interfaces, 2015,7(15):8076-8082.
doi: 10.1021/acsami.5b00633 pmid: 25823715 |
[51] |
WANG F, PI J, LI J Y, et al. Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability[J]. Journal of Colloid and Interface Science, 2019,557:65-75.
doi: 10.1016/j.jcis.2019.08.114 pmid: 31514094 |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[3] | 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58. |
[4] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[5] | 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/ 多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101. |
[6] | 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110. |
[7] | 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86. |
[8] | 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72. |
[9] | 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72. |
[10] | 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
[11] | 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177. |
[12] | 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166. |
[13] | 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(09): 191-200. |
[14] | 裘柯槟, 陈维国, 周华, 应双双. 成像技术在纺织品颜色测量中的应用进展[J]. 纺织学报, 2020, 41(09): 155-161. |
[15] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
|