纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 1-9.doi: 10.13475/j.fzxb.20200200209

• 纤维材料 •    下一篇

高强型聚酯工业丝在不同温度下的蠕变断裂机制

陈康1, 蒋权2, 姬洪1, 张阳1, 宋明根2, 张玉梅1(), 王华平1   

  1. 1.东华大学 纤维材料改性国家重点实验室, 上海 201620
    2.浙江尤夫高新纤维股份有限公司, 浙江 湖州 313017
  • 收稿日期:2020-02-01 修回日期:2020-05-27 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 张玉梅
  • 作者简介:陈康(1993—),男,博士生。主要研究方向为聚酯工业丝应用特性及其构效关系研究。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303004);中央高校基本科研业务费专项资金资助项目(CUSF-DH-D-2018016);湖州市南太湖精英计划创新团队项目(2016HJYLB-03-B);中国纺织工业联合会应用基础研究项目(J201301)

Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber

CHEN Kang1, JIANG Quan2, JI Hong1, ZHANG Yang1, SONG Minggen2, ZHANG Yumei1(), WANG Huaping1   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. Zhejiang Unifull Industrial Fiber Co., Ltd., Huzhou, Zhejiang 313017, China
  • Received:2020-02-01 Revised:2020-05-27 Online:2020-11-15 Published:2020-11-26
  • Contact: ZHANG Yumei

摘要:

为探究高强型聚酯工业丝在不同温度下的蠕变断裂机制,采用在线小角X射线散射和广角X射线散射方法对低温(80 ℃)及高温(200 ℃)条件下聚酯工业丝蠕变断裂过程中的微观结构演变进行研究。结果表明:高强型聚酯工业丝的蠕变断裂可分为3个阶段,即负荷加载的拉伸阶段、蠕变形变阶段及加速形变阶段;在80 ℃低温下蠕变断裂的前2个阶段中,部分倾斜片晶转变成未倾斜片晶,且倾斜部分片晶偏离角不断增大,而在加速阶段,伸直的非晶区分子链发生断裂,周期性的片晶堆叠结构遭到破坏;在200 ℃高温下蠕变断裂的前2个阶段中,片晶层表面始终保持倾斜状态且倾斜角逐渐减小,而在加速阶段中,高度取向的非晶区分子链对晶区结构施加应力,晶区表面分子链被拉出而遭到破坏,导致周期性的片晶堆叠结构遭到破坏。

关键词: 聚酯工业丝, 蠕变断裂机制, 结晶结构, 片晶结构, 蠕变过程

Abstract:

In order to investigate the creep rupture mechanism of high-tenacity polyester industrial fibers at different temperatures, in-situ small-angle X-ray scattering and wide-angle X-ray scattering characterizations were conducted on a high tenacity polyester fiber during creep rupture process at 80 ℃ and 200 ℃, respectively. The creep strain-time curves were categorised into tensile zone (I), creep deformation zone (II) and creep rupture zone (III). For the low-temperature creep rupture, a small part of lamellar surfaces was transformed into normal surface, and the tilting angle of the inclined lamellar surface increased with time in the first two zones. In creep rupture zone, the fully stretched amorphous molecular chains were broken, resulting in the disappearance of the periodic lamellar structure. For the high-temperature creep rupture process on the other hand, the surface of the lamellar structure always maintained an inclined state and the lamellar tilting angle gradually decreased in the first two zones. Highly-oriented molecular chains in the amorphous region exerted stress on the crystal region, which causes the surface chains in the amorphous region and the crystal region to be pulled out, resulting in the fracture of crystalline structure and the lamellar stack structure was damaged in creep rupture zone.

Key words: polyester industrial fiber, creep rupture mechanism, crystalline structure, lamellar structure, creep process

中图分类号: 

  • TS102

图1

80 和 200 ℃下HT聚酯工业丝蠕变断裂曲线及对应的二维SAXS图谱"

表1

HT聚酯工业丝不同温度下的蠕变形变参数"

蠕变温度/
初始蠕变形
变率/%
总蠕变形
变率/%
蠕变过程中发生
的形变率/%
80 15.5 20.6 5.1
200 16.4 23.1 6.7

图2

200 ℃时HT聚酯工业丝的一维电子云密度及相关函数"

图3

HT聚酯工业丝不同片晶结构参数的演变"

图4

HT聚酯工业丝不同蠕变温度条件下片晶倾斜角随时间的变化(四点式部分)"

图5

HT聚酯工业丝在不同蠕变温度下的二维WAXS图"

图6

HT聚酯工业丝在不同蠕变温度条件下的一维WAXS曲线"

图7

HT聚酯工业丝在不同温度条件下晶区结构参数随蠕变时间的演变"

图8

HT聚酯工业丝晶区取向因子、非晶区取向因子及双折射率随蠕变时间的演变"

图9

HT聚酯工业丝蠕变及蠕变断裂过程中微观结构示意图"

[1] HUANG L, PAN L, INOUE T. Effect of solid-state shearing of poly(ethylene terephtalate) on isothermal crystallization and fiber structure formation[J]. Journal of Applied Polymer Science, 2007,104(2):787-791.
doi: 10.1002/(ISSN)1097-4628
[2] RIM P B, NELSON C J. Properties of PET fibers with high modulus and low shrinkage (HMLS): I: yarn properties and morphology[J]. Journal of Applied Polymer Science, 1991,42(7):1807-1813.
doi: 10.1002/app.1991.070420702
[3] LIU Y, YIN L, ZHAO H, et al. Insights into process-structure-property relationships of poly (ethylene terephthalate) industrial yarns by synchrotron radiation WAXD and SAXS[J]. Journal of Applied Polymer Science, 2015,132(36):42512-42522.
[4] MURTHY N S, GRUBB D T. Deformation in lamellar and crystalline structures: in situ simultaneous small-angle X-ray scattering and wide-angle X-ray diffraction measurements on polyethylene terephthalate fibers[J]. Journal of Polymer Science Part B: Polymer Physics, 2003,41(13):1538-1553.
doi: 10.1002/(ISSN)1099-0488
[5] 葛陈程, 吕汪洋, 石教学, 等. 应用二维X射线衍射法测定涤纶工业丝结晶和取向行为[J]. 纺织学报, 2018,39(3):19-25.
GE Chencheng, LÜ Wangyang, SHI Jiaoxue, et al. Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction[J]. Journal of Textile Research, 2018,39(3):19-25.
[6] 薛元, 汤成坦, 彦志勇. 工业用涤纶长丝的结构与性能[J]. 纺织学报, 2009,30(11):33-36.
XUE Yuan, TANG Chengtan, YAN Zhiyong. Structure and properties of industrial PET filaments[J]. Journal of Textile Research, 2009,30(11):33-36.
[7] LECHAT C, BUNSELL A R, DAVIES P. Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres[J]. Journal of Materials Science, 2011,46(2):528-533.
doi: 10.1007/s10853-010-4999-x
[8] CHEN K, YU J, LIU Y, et al. Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature[J]. Polymer International, 2019,68(3):555-563.
doi: 10.1002/pi.2019.68.issue-3
[9] SHIOYA M, KAWAZOE T, OKAZAKI R, et al. Small-angle X-ray scattering study on the tensile fracture process of poly (ethylene terephthalate) fiber[J]. Macromolecules, 2008,41(13):4758-4765.
doi: 10.1021/ma7027616
[10] LIU Y, YIN L, ZHAO H, et al. Strain-induced structural evolution during drawing of poly (ethylene terephthalate) fiber at different temperatures by in situ synchrotron SAXS and WAXD[J]. Polymer, 2017,119:185-194.
doi: 10.1016/j.polymer.2017.05.032
[11] YU J, WANG R, YANG C, et al. Morphology and structure changes of aromatic copolysulfonamide fibers heat-drawn at various temperatures[J]. Polymer International, 2014,63(12):2084-2090.
doi: 10.1002/pi.4747
[12] YU J, CHEN K, LI X, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016,133(41):44078-44088.
[13] YU J, TIAN F, CHEN S, et al. Structure and property development of aromatic copolysulfonamide fibers during wet spinning process[J]. Journal of Applied Polymer Science, 2015,132(31):42343-42350.
[14] ALEXANDER L E. X-ray diffraction methods in polymer science[M]. New York: Wiley-Interscience, 1969: 582.
[15] HUISMAN R, HEUVEL H M. The effect of spinning speed and drawing temperature on structure and properties of poly(ethylene terephthalate) yarns[J]. Journal of Applied Polymer Science, 1989,37(3):595-616.
doi: 10.1002/app.1989.070370302
[16] TANG Y, JIANG Z, MEN Y, et al. Uniaxial deformation of overstretched polyethylene: in-situ synchrotron small angle X-ray scattering study[J]. Polymer, 2007,48(17):5125-5132.
doi: 10.1016/j.polymer.2007.06.056
[17] HSIAO B S, VERMA R K. A novel approach to extract morphological variables in crystalline polymers from time-resolved synchrotron SAXS data[J]. Journal of Synchrotron Radiation, 1998,5(1):23-29.
doi: 10.1107/S0909049597010091
[18] WANG Z G, HSIAO B S, FU B X, et al. Correct determination of crystal lamellar thickness in semicrystalline poly (ethylene terephthalate) by small-angle X-ray scattering[J]. Polymer, 2000,41(5):1791-1797.
doi: 10.1016/S0032-3861(99)00327-4
[19] YAN T, YAO Y, JIN H, et al. Elastic response of copolyether-ester fiber on its phase morphology under different heat-treatment condition[J]. Journal of Polymer Research, 2016,23(11):226-233.
doi: 10.1007/s10965-016-1118-y
[20] 邹家熊, 于金超, 张烨, 等. 高强低伸型聚酯工业丝受热条件下的应用特性变化[J]. 合成纤维, 2019,48(2):11-15.
ZOU Jiaxiong, YU Jinchao, ZHANG Ye, et al. Application characteristics of high strength and low stretch polyester industrial yarn under heating condi-tions[J]. Synthetic Fiber in China, 2019,48(2):11-15.
[21] MA Q, GEORIGIEV G, CEBE P. Constraints in semicrystalline polymers: using quasi-isothermal analysis to investigate the mechanisms of formation and loss of the rigid amorphous fraction[J]. Polymer, 2011,52(20):4562-4570.
doi: 10.1016/j.polymer.2011.08.006
[22] MENCZEL J D. The rigid amorphous fraction in semicrystalline macromolecules[J]. Journal of Thermal Analysis and Calorimetry, 2011,106(1):7-24.
doi: 10.1007/s10973-011-1496-7
[1] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[2] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[3] 刘淑萍, 李亮, 刘让同, 崔世忠, 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19.
[4] 曲腾云 于伟东. 纤维素纤维的生物降解性能[J]. 纺织学报, 2015, 36(11): 20-26.
[5] 潘巧灵 杜以军 蒋金华 陈南梁. 聚芳酯织物的光老化性能[J]. 纺织学报, 2014, 35(7): 53-0.
[6] 杨旭红;顾俊晶. 热处理对竹浆纤维微观结构和力学性能的影响[J]. 纺织学报, 2011, 32(1): 11-15.
[7] 章伟;何建新;李克兢;崔世忠;王善元. 竹浆粕的预水解与硫酸盐蒸煮工艺[J]. 纺织学报, 2009, 30(10): 31-36.
[8] 叶静. PET/纳米矿物粒子纤维的结构与性能[J]. 纺织学报, 2009, 30(01): 22-25.
[9] 何建新.;王善元. 天然纤维素的核磁共振碳谱表征[J]. 纺织学报, 2008, 29(5): 1-5.
[10] 何建新.;章伟;王善元. 竹纤维的结构分析[J]. 纺织学报, 2008, 29(2): 20-24.
[11] 何建新;唐予远;王善元. 醋酸纤维素的结晶结构与热性能[J]. 纺织学报, 2008, 29(10): 12-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!