纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 27-33.doi: 10.13475/j.fzxb.20200202407
SUN Qian1, KAN Yan1, LI Xiaoqiang1,2(), GAO Dekang2
摘要:
为获得具有比色效果的纳米纤维湿度传感器,以聚丙烯腈(PAN)和氯化钴(CoCl2)为原料,采用静电纺丝技术制备了PAN/CoCl2复合纳米纤维膜,并组装成纳米纤维比色湿度传感器。借助扫描电子显微镜、傅里叶红外光谱仪、能量色散X射线光谱仪对纳米纤维膜的微观结构和表面形态进行表征和分析,利用紫外-可见分光光度计分析纤维在不同湿度下以及不同有机溶剂饱和蒸汽氛围下的反射光谱,并采用电化学工作站测试传感器在不同湿度环境下的响应和恢复能力。结果表明:在相对湿度由11%增加至98%时,PAN/CoCl2纳米纤维膜可由蓝色变至粉色,且该颜色变化过程可逆,响应和恢复速度快;在11%~75%的相对湿度环境下,PAN/CoCl2纳米纤维比色湿度传感器的电流在12 s内可达1 023 nA左右;当相对湿度降至11%时,2 s内电流可从2 187 nA降至10 nA,具有快速的响应和恢复能力。
中图分类号:
[1] | WANG Zhihao, ZHANG Yihe, WANG Wenjiang, et al. High performance of colorimetric humidity sensors based on minerals[J]. Chemical Physics Letters, 2019,727:90-94. |
[2] | LI Peiwen, ZHENG Xuejun, ZHANG Yong, et al. Humidity sensor based on electrospun (Na0.5Bi0.5)(0.94) TiO3-Ba0.06TiO3 nanofibers[J]. Ceramics International, 2015,41(10):14251-14257. |
[3] | LIANG Shuai, HE Xiaowei, WANG Fei, et al. Highly sensitive humidity sensors based on LiCl-Pebax 2533 composite nanofibers via electrospinning[J]. Sensor Actuat B-Chem, 2015,208:363-368. |
[4] | IYENGAR S A, SRIKRISHNARKA P, JANA S K, et al. Surface-treated nanofibers as high current yielding breath humidity sensors for wearable electronics[J]. Acs Appl Electron Ma, 2019,1(6):951-960. |
[5] | YIN M, YANG F, WANG Z J, et al. A fast humidity sensor based on Li+-doped SnO2 one-dimensional porous nanofibers [J]. Materials, 2017,10(5):535. |
[6] |
ZHU P H, LIU Y, FANG Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019,35(14):4834-4842.
doi: 10.1021/acs.langmuir.8b04259 pmid: 30892906 |
[7] |
BRIDGEMAN D, CORRAL J, QUACH A, et al. Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceu-ticals[J]. Langmuir, 2014,30(35):10785-10791.
pmid: 25141132 |
[8] | BUMBUDSANPHAROKKE N, LEE W, CHUNG U, et al. Study of humidity-responsive behavior in chiral nematic cellulose nanocrystal films for colorimetric response[J]. Cellulose, 2018,25(1):305-317. |
[9] | KIM S, HAN S, KOH Y G, et al. Colorimetric humidity sensor using inverse opal photonic gel in hydrophilic ionic liquid[J]. Sensors, 2018,18(5):1357. |
[10] | 何贤培. 无重金属湿敏变色功能材料的研究[J]. 广东化工, 2016,43(17):66-72. |
HE Xianpei. Study on humidity-sensitive material without heavy metal[J]. Guangdong Chemical Industry, 2016,43(17):66-72. | |
[11] | WEI Z Q, ZHOU Z K, LI Q Y, et al. Flexible nanowire cluster as a wearable colorimetric humidity sensor[J]. Small, 2017.DOI: 10.10021smll201700109. |
[12] | XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Adv Energy Mater, 2018,8(14):1702884. |
[13] | LI X Q, LIN L, ZHU Y N, et al. Preparation of ultrafine fast-dissolving cholecalciferol-loaded poly (vinyl pyrrolidone) fiber mats via electro-spinning[J]. Polymer Composite, 2013,34(2):282-287. |
[14] | BAOOL S, IMRAN Z, QADIR M I, et al. Comparative analysis of Ti, Ni, and Au electrodes on characteristics of TiO2 nanofibers for humidity sensor application[J]. J Mater Sci Technol, 2013,29(5):411-414. |
[15] | KIM E, KIM S Y, JO G, et al. Colorimetric and resistive polymer electrolyte thin films for real-time humidity sensors[J]. Acs Appl Mater Inter, 2012,4(10):5179-5187. |
[16] | 李佩雯. NBT-BT6纳米纤维/介孔粉末相对湿度传感器的性能研究[D]. 湘潭:湘潭大学, 2016: 23-29. |
LI Peiwen. The properties of humidity sensor based on(Na0.5Bi0.5)0.94TiO3-Ba0.06TiO3 nanofibers/ mesoporous powders[D]. Xiangtan:Xiangtan University, 2016: 23-29. | |
[17] | 贺媛. BaTiO3纳米纤维相对湿度传感性能的研究[D]. 长春:吉林大学, 2011: 47-58. |
HE Yuan. Study on humidity sensing properties of BaTiO3 nanofiber[D]. Changchun: Jilin University, 2011: 47-58. | |
[18] |
YOU M H, YAN X, ZHANG J, et al. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes[J]. Nanoscale Res Lett, 2017,12(1):360.
pmid: 28532125 |
[19] | 戴克华. 氯化钴溶液变色原理的探究[J]. 化学教学, 2011(1):45-46. |
DAI Kehua. Exploring the color change principle of cobalt chloride solution[J]. Education in Chemistry, 2011(1):45-46. |
[1] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[2] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[3] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[4] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[5] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[6] | 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19. |
[7] | 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177. |
[8] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[9] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[10] | 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144. |
[11] | 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22. |
[12] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
[13] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[14] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[15] | 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182. |
|