纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 34-40.doi: 10.13475/j.fzxb.20200307207
马跃1, 郭静1,2(), 殷聚辉1, 赵秒1,2, 宫玉梅1,2
MA Yue1, GUO Jing1,2(), YIN Juhui1, ZHAO Miao1,2, GONG Yumei1,2
摘要:
为改善纤维素/磷虾蛋白(C/AKP)复合纤维的可降解性和抗菌性,在原液中加入氧化纤维素(DAC)制备C/DAC/AKP纺丝原液,采用湿法纺丝技术分别在H2SO4/Na2SO4/ZnSO4和H2SO4/Na2SO4/KAl(SO4)2凝固浴中凝固后制得复合纤维,研究了DAC及凝固浴组分对纤维分子间作用、体外降解、抑菌以及热稳定等结构和性能的影响。结果表明:在相同的凝固浴中,相比于C/AKP复合纤维,C/DAC/AKP复合纤维体系内分子间氢键含量从24.26%增加至32.96%,热稳定性提高7.5%,降解性也有所改善;凝固浴中KAl(SO4)2的加入会提高纤维的分子间氢键以及热稳定性,同时C/AKP和C/DAC/AKP复合纤维均具有良好的抗菌效果,在生物材料方面具有良好的应用前景。
中图分类号:
[1] |
SIRVIÖ J. Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent[J]. Journal of Materials Chemistry A, 2019,7(2):755-763.
doi: 10.1039/C8TA09959F |
[2] |
PUSPASARI T, AKHTAR F H, OGIEGLO W, et al. High dehumidification performance of amorphous cellulose composite membranes prepared from trimethylsilyl cellulose[J]. Journal of Materials Chemistry A, 2018,6(19):9271-9279.
doi: 10.1039/C8TA00350E |
[3] |
BABAEE M, JONOOBI M, HAMZEH Y, et al. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers[J]. Carbohydrate Polymers, 2015,132:1-8.
doi: 10.1016/j.carbpol.2015.06.043 pmid: 26256317 |
[4] |
KANNAM S K, OEHME D, DOBLIN M, et al. Hydrogen bonds and twist in cellulose microfibrils[J]. Carbohydrate Polymers, 2017,175:433-739.
doi: 10.1016/j.carbpol.2017.07.083 pmid: 28917886 |
[5] |
UTO T, YAMAMOTO K, KADOKAWA J I. Cellulose crystal dissolution in imidazolium-based ionic liquids: a theoretical study[J]. The Journal of Physical Chemistry B, 2018,122(1):258-266.
doi: 10.1021/acs.jpcb.7b09525 pmid: 29264920 |
[6] |
LINDMAN B, MEDRONHO B, ALVES L, et al. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena[J]. Physical Chemistry Chemical Physics, 2017,19(35):23704-23718.
doi: 10.1039/c7cp02409f pmid: 28621781 |
[7] |
NIWANTHI D, VIDURA D T, SHELBY T, et al. Substituent effects on cellulose dissolution in imidazolium-based ionic liquids[J]. Cellulose, 2018,25:6887-6900.
doi: 10.1007/s10570-018-2055-1 |
[8] |
CAO J, WEI W, GOU G J, et al. Cellulose films from the aqueous DMSO/TBAH-system[J]. Cellulose, 2018,25(12):1-12.
doi: 10.1007/s10570-017-1536-y |
[9] |
CHENG G, ZHU P X, LI J L, et al. All-cellulose films with excellent strength and toughness via a facile approach of dissolution-regeneration[J]. Journal of Applied Polymer Science, 2018,136(2):46925-46936.
doi: 10.1002/app.v136.2 |
[10] |
WANG S, LYU K J, SUN P, et al. Influence of cation on the cellulose dissolution investigated by MD simulation and experiments[J]. Cellulose, 2017,24(11):1-11.
doi: 10.1007/s10570-016-1105-9 |
[11] | 马博谋, 侯秀良, 曹秀明, 等. 一浴法角蛋白/纤维素复合膜制备与性能研究[J]. 材料导报, 2018,32(S1):261-264. |
MA Bomou, HOU Xiuliang, CAO Xiuming, et al. Fabrication and properties of the keratin/cellulose composite membranes in one-pot[J]. Materials Review, 2018,32(S1):261-264. | |
[12] |
SILVA N H C S, VILELA C, MARRUCHO I M, et al. Protein-based materials: from sources to innovative sustainable materials for biomedical applications[J]. Journal of Materials Chemistry B, 2014,2(24):3715-3740.
doi: 10.1039/c4tb00168k |
[13] | 全沁果, 段伟文, 曾雪鸽, 等. 南极磷虾粉成分分析及营养学评价[J]. 食品与机械, 2018,34(9):68-76. |
QUAN Qinguo, DUAN Weiwen, ZENG Xuege, et al. Analysis and nutritional evaluation of Antarctic krill powder[J]. Food & Machinery, 2018,34(9):68-76. | |
[14] |
BAX M L, AUBRY L, FERREIRA C, et al. Cooking temperature is a key determinant of in vitro meat protein digestion rate: investigation of underlying mechani-sms[J]. Journal of Agricultural & Food Chemistry, 2012,60(10):2569-2576.
doi: 10.1021/jf205280y pmid: 22335241 |
[15] | 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014,33(4):270-273. |
GUO Jing, LI Xuecai, YU Chunfang, et al. Extraction of Antarctic krill protein and properties of its composite fibers[J]. Journal of Dalian Polytechnic University, 2014,33(4):270-273. | |
[16] |
YANG L J, GUO J, YU Y, et al. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material[J]. Carbohydrate Polymers, 2016,142:275-281.
doi: 10.1016/j.carbpol.2016.01.050 pmid: 26917400 |
[17] |
ZHANG R, GUO J, LIU Y F, et al. Effects of sodium salt types on the intermolecular interaction of sodium alginate/Antarctic krill protein composite fibers[J]. Carbohydrate Polymers, 2018,189:72-78.
doi: 10.1016/j.carbpol.2018.02.013 pmid: 29580428 |
[18] |
CHEN J, GUO J, ZHAO M, et al. Hydrogen bonding in chitosan/Antarctic krill protein composite system: study on construction and enhancement mechanism[J]. International Journal of Biological Macromolecules, 2020. DOI: 10.1016/j.ijbiomac.2019.09.123.
doi: 10.1016/j.ijbiomac.2021.01.128 pmid: 33485889 |
[19] |
SONG J X, GUO J, ZHANG S, et al. Properties of cellulose/Antarctic krill protein composite fibers prepared in different coagulation baths[J]. International Journal of Biological Macromolecules, 2018,114:334-340.
doi: 10.1016/j.ijbiomac.2018.03.118 pmid: 29578013 |
[20] |
QI R R, GUO J, LIU Y F, et al. Effects of salt content on secondary structure of protein in sodium alginate/Antarctic krill protein composite system and characterization of fiber properties[J]. Dyes and Pigments, 2019,171:107686-107693.
doi: 10.1016/j.dyepig.2019.107686 |
[21] |
KIM U J, KIMURA S, WADA M. Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam[J]. Carbohydrate Polymers, 2019,214:294-302.
doi: 10.1016/j.carbpol.2019.03.058 pmid: 30926000 |
[22] |
YAO M J, WANG Z, LIU Y, et al. Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution[J]. Carbohydrate Polymers, 2019,212:345-351.
doi: 10.1016/j.carbpol.2019.02.052 pmid: 30832866 |
[23] | 吴静, 郭静, 杨利军, 等. 海藻酸钠/南极磷虾蛋白/聚乙烯醇复合纤维的分子作用及其性能表征[J]. 纺织学报, 2017,38(2):7-13. |
WU Jing, GUO Jing, YANG Lijun, et al. Molecular interaction and characterization of sodium alginate/Antarctic krill protein/polyvinyl alcohol composite fiber[J]. Journal of Textile Research, 2017,38(2):7-13. | |
[24] |
GEORGE D, MAHESWARI P U, BEGUM K M M S, et al. Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity[J]. Journal of Agricultural and Food Chemistry, 2019,67(39):10880-10890.
doi: 10.1021/acs.jafc.9b01933 pmid: 31508956 |
[25] |
LI D F, YE Y X, LI D R, et al. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-PEG composite hydrogel fibers for wound dressings[J]. Carbohydrate Polymers, 2015,137:508-514.
doi: 10.1016/j.carbpol.2015.11.024 pmid: 26686157 |
[26] |
KUBO S, KADLA J F. Hydrogen bonding in lignin: a fourier transform infrared model compound study[J]. Biomacromolecules, 2005,6(5):2815-2821.
doi: 10.1021/bm050288q pmid: 16153123 |
[27] |
WANG Z Q, YANG H W, ZHU Z. Study on the blends of silk fibroin and sodium alginate: hydrogen bond formation, structure and properties[J]. Polymer, 2019,163:144-153.
doi: 10.1016/j.polymer.2019.01.004 |
[28] | HE N F, SHAN W T, WANG J L, et al. Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A, 2019(7):6869-6876. |
[29] | 梅昕, 马凤森, 喻炎, 等. 高分子可降解生物材料的降解研究进展[J]. 材料导报, 2016,30(S1):298-303. |
MEI Xin, MA Fengsen, YU Yan, et al. Review on the degradation of biodegradable polymer materials[J]. Materials Review, 2016,30(S1):298-303. | |
[30] |
陈海波, 方丽, 喻炎, 等. 氧化再生纤维素止血产品的体外降解研究[J]. 中国医疗器械志, 2018,42(5):380-383.
pmid: 30358358 |
CHEN Haibo, FANG Li, YU Yan, et al. Study on in vitro degradation of oxidized regenerated cellulose absorbable hemostatic products[J]. Chinese Journal of Medical Instrumentation, 2018,42(5):380-383.
doi: 10.3969/j.issn.1671-7104.2018.05.020 pmid: 30358358 |
|
[31] | 邱莹, 于腾. 20种中药及其复方抗真菌实验研究[J]. 济宁医学院学报, 2007,30(3):237-238. |
QIU Ying, YU Teng. Experimental study on 20 kinds of chinese medicine and its compound antifungal[J]. Journal of Jining Medical College, 2007,30(3):237-238. | |
[32] | 高晓杰, 许安, 郭竑宇, 等. 石榴皮提取物对棉织物的抗菌整理研究[J]. 上海纺织科技, 2016,44(8):21-26. |
GAO Xiaojie, XU An, GUO Hongyu, et al. Antibacterial finish of cotton fabric with pericarpium granati extracts[J]. Shanghai Textile Science & Technology, 2016,44(8):21-26. |
[1] | 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30. |
[2] | 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108. |
[3] | 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94. |
[4] | 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88. |
[5] | 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
[6] | 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19. |
[7] | 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190. |
[8] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[9] | 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15. |
[10] | 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8. |
[11] | 刘思佳, 喻倩, 王锐, 孔宪明. 再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测[J]. 纺织学报, 2020, 41(07): 23-28. |
[12] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[13] | 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7. |
[14] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[15] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
|