纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 81-88.doi: 10.13475/j.fzxb.20200101308
屈永帅1,2, 施朝禾1,2, 张瑞云1,2,3(), 赵树元1,2, 刘柳3
QU Yongshuai1,2, SHI Zhaohe1,2, ZHANG Ruiyun1,2,3(), ZHAO Shuyuan1,2, LIU Liu3
摘要:
为解决苎麻在乙二醇有机溶剂脱胶中纤维易被氧化而导致性能下降的问题,在乙二醇溶剂中添加助剂蒽醌对苎麻进行脱胶,并对蒽醌不同添加量下制得的纤维进行结构和性能表征。结果表明:纤维中半纤维素含量随蒽醌添加量的增加而升高,纤维的聚合度、结晶度、物理力学性能先升高后降低,纤维的残胶率和线密度先降低后升高;当蒽醌质量分数为0.3% 时,这些性能均达到最佳值,此时纤维的聚合度、结晶度、制成率、断裂强度、断裂伸长率、断裂功比不加蒽醌时分别提高了7.32%、20.53%、1.46%、9.55%、6.89%、33.33%,纤维的残胶率、线密度比不加蒽醌时分别降低了17.91%、7.24%。
中图分类号:
[1] | 熊和平. 我国麻类生产的现状与政策建议[J]. 中国麻业科学, 2010,32(6):301-304. |
XIONG Heping. The production status and policy suggestion of bast and leaf fiber crops in china[J]. Plant Fiber Sciences in China, 2010,32(6):301-304. | |
[2] | QI H, CHEN H, MAO K, et al. Investigation of the structure of ramie fibers by enzymatic peeling[J]. Cellulose, 2019,26(5):2955-2968. |
[3] | 孟超然, 毕雪蓉, 李佳蔚, 等. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018,39(2):78-85. |
MENG Chaoran, BI Xuerong, LI Jiawei, et al. Control of physical and chemical properties of oxidation degummed ramie fiber with 1,8-dihydroxyanthraquinone[J]. Journal of Textile Research, 2018,39(2):78-85. | |
[4] | QU Y, YIN W, ZHANG R, et al. Isolation and characterization of cellulosic fibers from ramie using organosolv degumming process[J]. Cellulose, 2020,27(3):1225-1237. |
[5] |
FAN X S, LIU Z W, LIU Z T, et al. A novel chemical degumming process for ramie bast fiber[J]. Textile Research Journal, 2010,80(19):2046-2051.
doi: 10.1177/0040517510373632 |
[6] | 成莉凤, 刘正初, 冯湘沅, 等. 苎麻脱胶果胶复合酶的优选及其效果分析[J]. 纺织学报, 2017,38(6):64-68. |
CHENG Lifeng, LIU Zhengchu, FENG Xiangyuan, et al. Screening on compound pectinase for ramie degumming and its effect analysis[J]. Journal of Textile Research, 2017,38(6):64-68. | |
[7] |
MUKHOPADHYAY A, DUTTA N, CHATTOPADHYAY D, et al. Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase[J]. Bioresource Technology, 2013,137:202-208.
doi: 10.1016/j.biortech.2013.03.139 pmid: 23587821 |
[8] | ZHANG Q, YAN S. Degumming of ramie bast fibers by Ca2+-activated composite enzyme [J]. Journal of The Textile Institute, 2013,104(1):78-83. |
[9] | MENG C, YANG J, ZHANG B, et al. Rapid and energy-saving preparation of ramie fiber in TEMPO- mediated selective oxidation system[J]. Industrial Crops and Products, 2018,126:143-150. |
[10] | ZHANG Y, HOU Q, FU Y, et al. One-step fractionation of the main components of bamboo by formic acid-based organosolv process under pressure[J]. Journal of Wood Chemistry and Technology, 2018,38(3):170-182. |
[11] | JASCHINSKI T, GUNNARS S, BESEMER A C, et al. Oxidized polymeric carbohydrates and products made thereof:US6635755[P]. 2003-10-21. |
[12] | 张美云, 谭国民. 龙须草自催化乙醇法制浆工艺及反应历程的研究[J]. 中国造纸学报, 2001,16(2):18-23. |
ZHANG Meiyun, TAN Guomin. Auto-catalytic ethanol pulping of chinese alpine rush and its reaction course[J]. Transactions of China Pulp and Paper, 2001,16(2):18-23. | |
[13] | 李万利, 罗学刚. 芦苇乙醇法分离木素制浆研究:I[J]. 中华纸业, 2005,26(7):30-33. |
LI Wanli, LUO Xuegang. Studies on delignification from reed by ethanol:I[J]. China Pulp & Paper Industry, 2005,26(7):30-33. | |
[14] |
NAVAEE-ARDEH S, MOHAMMADI-ROVSHAND EH J, POURJOOZI M. Influence of rice straw cooking conditions in the soda-ethanol-water pulping on the mechanical properties of produced paper sheets[J]. Bioresource Technology, 2004,92(1):65-69.
pmid: 14643987 |
[15] |
YU H, XING Y, LEI F, et al. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv[J]. Bioresource Technology, 2014,167:46-52.
doi: 10.1016/j.biortech.2014.05.111 pmid: 24968111 |
[16] |
ZHANG W, YI Z, HUANG J, et al. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus[J]. Bioresource Technology, 2013,130:30-37.
doi: 10.1016/j.biortech.2012.12.029 pmid: 23298647 |
[17] | SEGAL L, CREELY J, MARTIN JR A, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959,29(10):786-794. |
[18] | 王德骥. 苎麻纤维素化学与工艺学: 脱胶和改性 [M]. 北京: 科学出版社, 2001: 1-20. |
WANG Deji. Ramie cellulose chemistry and technology degumming and modification[M]. Beijing: Science Press, 2001: 1-20. | |
[19] | ZIDERMAN I I, BELAYCHE J. Effect of anthraquinones on endwise degradation of hydrocellulose in relation to alkaline pulping[J]. Carbohydrate Polymers, 1986,6(2):109-19. |
[20] | APRIL G C, NAYAK R G. Method and pulping composition for the selective delignification of lignocellulosic materials with an aqueous amine-alcohol mixture in the presence of a catalyst:US4597830[P]. 1986-07-01. |
[21] | FUJII J S, WHALLEY W G, SCHMIDT F L. Pretreatment of lignocellulose with anthraquinone prior to pulping: US4127439[P]. 1978-11-28. |
[22] | 崔锐谦, 黎国康. 蒽醌作苎麻脱胶添加剂的研究[J]. 麻纺织技术, 1981(4):27-34. |
CUI Ruiqian, LI Guokang. Study on the use of anthraquinone as additive for ramie degumming[J]. Ramie Textile Science Technology, 1981(4):27-34. | |
[23] | OBST J R. Kinetics of alkaline cleavage of β-Aryl ether bonds in lignin models: significance to delignifica-tion[J]. Holzforschung, 1983,37(1):23-28. |
[24] | GIERER J, LINDEBERG O, NOREN I. Alkaline delignification in the presence of anthraquinone/anthrahydroquinone[J]. Holzforschung, 1979,33(6):213-214. |
[25] | LI Z, LI Z, DING R, et al. Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties[J]. Textile Research Journal, 2016,86(5):451-460. |
[26] | AMIRALIAN N, ANNAMALAI P K, MEMMOTTP, et al. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods[J]. Cellulose, 2015,22(4):2483-2498. |
[27] |
JORRAND P, PERDRIX S. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance[J]. Biotechnology for Biofuels, 2010,3(1):1-10.
doi: 10.1186/1754-6834-3-1 pmid: 20047650 |
[28] | HOYOS C G, ALVAREZ V A, ROJO P G, et al. Fique fibers: enhancement of the tensile strength of alkali treated fibers during tensile load application[J]. Fibers and Polymers, 2012,13(5):632-640. |
[29] | 张景强, 林鹿, 孙勇, 等. 纤维素结构与解结晶的研究进展[J]. 林产化学与工业, 2008,28(6):109-114. |
ZHANG Jingqiang, LIN Lu, SUN Yong, et al. Advance of studies on structure and decrystallization of cellu-lose[J]. Chemistry and Industry of Forest Products, 2008,28(6):109-114. | |
[30] | SONG Y, JIANG W, ZHANG Y, et al. Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment[J]. Cellulose, 2018,25(9):4979-4992. |
[1] | 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21. |
[2] | 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34. |
[3] | 肖梦苑, 周新科, 张佳悦, 任元林. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188. |
[4] | 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30. |
[5] | 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40. |
[6] | 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94. |
[7] | 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19. |
[8] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[9] | 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15. |
[10] | 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8. |
[11] | 刘思佳, 喻倩, 王锐, 孔宪明. 再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测[J]. 纺织学报, 2020, 41(07): 23-28. |
[12] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[13] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[14] | 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38. |
[15] | 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6. |
|