纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 174-180.doi: 10.13475/j.fzxb.20191104607
张艳艳1,2, 詹璐瑶1, 王培2, 耿俊昭2, 付飞亚2, 刘向东2()
ZHANG Yanyan1,2, ZHAN Luyao1, WANG Pei2, GENG Junzhao2, FU Feiya2, LIU Xiangdong2()
摘要:
为有效地解决无机纳米粒子制备的抗菌棉织物耐久性能不佳的问题,提高无机纳米粒子的整理技术,对黏结剂结合棉织物表面无机纳米粒子耐久抗菌性能的最新研究进展进行综述,介绍了抗菌耐久性的评价方法、黏结剂固化无机纳米粒子在棉织物表面的后整理方法等,并分析了耐久性,对影响耐久性的因素以及抗菌效率、抗菌效率下降趋势和洗涤过程中无机纳米粒子的损失进行了阐述与分析。指出:氨基和巯基基团可与无机纳米粒子形成配位键,有效地将无机纳米粒子固定在棉织物表面上;微波辐射和超声波可应用于增强无机纳米粒子在棉织物表面的黏附力。
中图分类号:
[1] | 高思梦, 王鸿博, 杜金梅, 等. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020,41(2):89-94. |
GAO Simeng, WANG Hongbo, DU Jinmei, et al. Synjournal of polybetaine antibacterial agent and its applications in cotton textiles finishing[J]. Journal of Textile Research, 2020,41(2):89-94. | |
[2] | XI G H, FAN W C, WANG L, et al. Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2, 2, 2-trifluoroethyl methacry-late[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015,53(16):1862-1871. |
[3] | WANG L, XI G H, WAN S J, et al. Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate[J]. Cellulose, 2014,21(4):2983-2994. |
[4] | 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020,41(3):188-196. |
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silvernanoparticles based on covalent bond[J]. Journal of Textile Research, 2020,41(3):188-196. | |
[5] | MOHAMED A L, HASSABO A G, SHAARAWY S, et al. Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate[J]. Carbohydrate Polymers, 2017,178:251-259. |
[6] | 周莉, 王鸿博, 傅佳佳, 等. 应用电子束辐照技术的棉织物抗菌整理工艺优化[J]. 纺织学报, 2017,38(10):81-87. |
ZHOU Li, WANG Hongbo, FU Jiajia, et al. Optimization on antibacterial finishing process of cottonfabricbased on electron beam irradiation[J]. Journal of Textile Research, 2017,38(10):81-87. | |
[7] | 席光辉. “雾聚合” 法制备自修复超疏水性及抗菌性棉织物表面的研究[D]. 杭州:浙江理工大学, 2016: 14-16. |
XI Guanghui. Study of healable super hydrophobicity and antimicrobial property of cotton surface modified via ″mist polymerization″[D]. Hangzhou: Zhejiang Sci-Tech University, 2016: 14-16. | |
[8] | LEE H J, YEO S Y, JEONG S H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics[J]. Journal of Materials Science, 2003,38(10):2199-2204. |
[9] | XU H, SHI X, MA H, et al. The preparation and antibacterial effects of dopa-cotton/AgNPs[J]. Applied Surface Science, 2011,257(15):6799-6803. |
[10] |
ZHANG D, CHEN L, ZANG C, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013,92(2):2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262 |
[11] | ALTINISIK A, BOZAC E, AKAR E, et al. Development of antimicrobial cotton fabric using bionanocomposites[J]. Cellulose, 2013,20(6):3111-3121. |
[12] | ZHANG F, WU X, CHEN Y, et al. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish[J]. Fibers and Polymers, 2009,10(4):496-501. |
[13] | YUE X, LIN H, YAN T, et al. Synjournal of silver nanoparticles with sericin and functional finishing to cotton fabrics[J]. Fibers and Polymers, 2014,15(4):716-722. |
[14] | LIU H, LEE Y Y, NORSTEN T B, et al. In situ formation of anti-bacterial silver nanoparticles on cotton textiles[J]. Journal of Industrial Textiles, 2014,44(2):198-210. |
[15] | KIM S S, PARK J E, LEE J. Properties and antimicrobial efficacy of cellulose fiber coated with silver nanoparticles and 3-mercaptopropyltrimethoxysilane(3-MPTMS)[J]. Journal of Applied Polymer Science, 2011,119(4):2261-2267. |
[16] | BUDAMA L, CAKIR BA, TOPEL O, et al. A new strategy for producing antibacterial textile surfaces using silver nanoparticles[J]. Chemical Engineering Journal, 2013,228:489-495. |
[17] | HEBEISH A, El-SHAFEI A, SHARAF S, et al. Novel precursors for green synjournal and application of silver nanoparticles in the realm of cotton finishing[J]. Carbohydrate Polymers, 2011,84(1):605-613. |
[18] | XU Q, KE X, CAI D, et al. Silver-based, single-sided antibacterial cotton fabrics with improved durability via an L-cysteine binding effect[J]. Cellulose, 2018,25(3):2129-2141. |
[19] | LIU Hanzhou, LV Ming, DENG Bo, et al. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations[J]. Scientific Reports, 2014,4:5920. |
[20] | SEDIGHI A, MONTAZER M, SAMADI N. Synjournal of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations[J]. Carbohydrate Polymers, 2014,110:489-498. |
[21] | 吕鹏召. 铜纳米粒子及复合材料的制备, 表征以及抗菌性, 催化加氢性能的研究[D]. 天津:天津理工大学, 2019: 24-26. |
LV Pengzhao. Preparation, characterization, antibacterial and catalytic hydrogenation properties of copper nanoparticles and composites[D]. Tianjin: Tianjin University of Technology, 2019: 24-26. | |
[22] | 田艳红, 王建坤, 杨菊花, 等. 载铜离子抗菌剂的制备及其络合棉织物的性能[J]. 纺织学报, 2015,36(12):79-84. |
TIAN Yanhong, WANG Jiankun, YANG Juhua, et al. Preparation of antibacterial agent loaded with Cu2+ and performance of cotton fabric complexed with agen[J]. Journal Textile Research, 2015,36(12):79-84. | |
[23] | CADY N C, BEHNKE J L, STRICKLAND A D. Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid andefficient inhibition of amulti-drug resistant wound pathogen, a. baumannii, and mammalian cell biocompatibility in vitro[J]. Advanced Functional Materials, 2011,21(13):2506-2514. |
[24] | SEDIGHI A, MONTAZER M, HEMMATINEJAD N. Copper nanoparticles on bleached cotton fabric: in situ synjournal and characterization[J]. Cellulose, 2014,21(3):2119-2132. |
[25] | GOUDA M, HEBEISH A. Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric[J]. Journal of Industrial Textiles, 2010,39(3):203-214. |
[26] | XU Q, DUAN P, ZHANG Y, et al. Double protectcopper nanoparticles loaded on L-cysteine modifiedcotton fabric with durable antibacterial properties[J]. Fibers and Polymers, 2018,19(11):2324-2334. |
[27] | XU Q, KE X, GE N, et al. Preparation of coppernanoparticles coated cotton fabrics with durable antibacterial properties[J]. Fibers and Polymers, 2018,19(5):1004-1013. |
[28] | SELVAM S, SUNDRARAJAN M. Functionalization of cotton fabric with PVP/ZnO nanoparticles for improved reactive dyeability and antibacterial activity[J]. Carbohydrate Polymers, 2012,87(2):1419-1424. |
[29] | PERELSHTEIN I, RUDERMAN E, PERKAS N, et al. Chitosan and chitosan-ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity[J]. Journal of Materials Chemistry B, 2013,1(14):1968-1976. |
[30] | SHAFEI A E, ABOU-OKEIL A. ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric[J]. Carbohydrate Polymers, 2011,83(2):920-925. |
[31] |
MANNA J, BEGUM G, KUMAR K P, et al. Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild cond-itions[J]. ACS Applied Materials & Interfaces, 2013,5(10):4457-4463.
pmid: 23607588 |
[32] | ZHANG D, ZHANG G, CHEN L, et al. Multifunctional finishing of cotton fabric based on in situ fabrication of polymer-hybrid nanoparticles[J]. Journal of Applied Polymer Science, 2013,130(5):3778-3784. |
[33] | AKIR B A, BUDAMA L, TOPEL Ö, et al. Synjournal of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012,414:132-139. |
[34] |
YUVAKKUMAR R, SURESH J, NATHANAEL A J, et al. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.)peel extract and its antibacterial applications[J]. Materials Science and Engineering: C, 2014,41:17-27.
doi: 10.1016/j.msec.2014.04.025 |
[35] | VIGNESHWARAN N, KUMAR S, KATHE A A, et al. Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites[J]. Nanotechnology, 2006,17(20):5087-5095. |
[36] | PANDIMURUGAN R, THAMBIDURAI S. Seaweed-ZnO composite for better antibacterial properties[J]. Journal of Applied Polymer Science, 2014,131(20):40948. |
[37] |
ALADPOOSH R, MONTAZER M. The role of cellulosic chains of cotton in biosynjournal of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features[J]. Carbohydrate Polymers, 2015,126:122-129.
doi: 10.1016/j.carbpol.2015.03.036 pmid: 25933530 |
[38] | IBRAHIM N A, REFAIE R, AHMED A F. Novel approach for attaining cotton fabric with multi-functional properties[J]. Journal of Industrial Textiles, 2010,40(1):65-83. |
[39] | KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity[J]. Cellulose, 2014,21(5):3813-3827. |
[40] | RAJENDRAN V, DHINESHBABU N R, KANNA R R, et al. Enhancement of thermal stability, flame retardancy, and antimicrobial properties of cotton fabrics functionalized by inorganic nanocomposites[J]. Industrial & Engineering Chemistry Research, 2014,53(50):19512-19524. |
[41] |
DOAKHAN S, MONTAZER M, RASHIDI A, et al. Influence of sericin/TiO2 nanocomposite on cotton fabric: part 1. enhanced antibacterial effect[J]. Carbohydrate Polymers, 2013,94(2):737-748.
pmid: 23544628 |
[42] |
GALKINA O L, SYCHEVA A, BLAGODATSIY А, et al. The sol-gel synjournal of cotton/TiO2 composites and their antibacterial properties[J]. Surface and Coatings Technology, 2014,253:171-179.
doi: 10.1016/j.surfcoat.2014.05.033 |
[43] |
WANG L, DING Y, SHEN Y, et al. Study on properties of modified nano-TiO2 and its application on antibacterial finishing of textiles[J]. Journal of Industrial Textiles, 2014,44(3):351-372.
doi: 10.1177/1528083713487758 |
[44] |
LEE D B N, ROBERTS M, BLUCHEL C G, et al. Zirconium: biomedical and nephrological applica-tions[J]. Asaio Journal, 2010,56(6):550-556.
pmid: 21245802 |
[45] |
GOUDA M. Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration[J]. Journal of Industrial Textiles, 2012,41(3):222-240.
doi: 10.1177/1528083711414960 |
[46] | GOUDA M, ALJAAFARI A, AL-FAYZ Y, et al. Preparation and characterization of some nanometal oxides using microwave technique and their application to cotton fabrics[J]. Journal of Nanomaterials, 2015,16(1):163-172. |
[47] |
DHINESHBABU N R, MANIVASAKAN P, KARTHIK A, et al. Hydrophobicity, flame retardancy and antibacterial properties of cotton fabrics functionalised with MgO/methyl silicate nanocomposites[J]. RSC Advances, 2014,4(61):32161-32173.
doi: 10.1039/c4ra03348e |
[48] |
RAI M, YADAV A, GADE A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnology Advances, 2009,27(1):76-83.
doi: 10.1016/j.biotechadv.2008.09.002 |
[49] |
SHAHIDI S, GHORANNEVISS M, MOAZZENCHI B, et al. Investigation of antibacterial activity on cotton fabrics with cold plasma in the presence of a magnetic field[J]. Plasma Processes and Polymers, 2007,4(S1):S1098-S1103.
doi: 10.1002/(ISSN)1612-8869 |
[50] |
MONTAZER M, ALIMOHAMMADI F, SHAMEI A, et al. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing[J]. Colloids and Surfaces B: Biointerfaces, 2012,89:196-202.
doi: 10.1016/j.colsurfb.2011.09.015 pmid: 21978552 |
[51] |
PERELSHTEIN I, RUDERMAN Y, PERKAS N, et al. The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties[J]. Cellulose, 2013,20(3):1215-1221.
doi: 10.1007/s10570-013-9929-z |
[52] |
ABRAMOV O V, GEDANKEN A, KOLTYPIN Y, et al. Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics[J]. Surface and Coatings Technology, 2009,204(5):718-722.
doi: 10.1016/j.surfcoat.2009.09.030 |
[53] |
GEDANKEN A, MOLLA K, BLANES M, et al. Enzymatic pre-treament as a means of enhancing the antibactrial activity and stability of ZnO nanoparticles sono-chemically coated on cotton fabrics[J]. Journal of Materials Chemistry, 2012,22:10736-10742.
doi: 10.1039/c2jm31054f |
[54] |
PTKOVA P, FRANCESKO A, FERNANDES M M, et al. Sonochemical coating of textiles with hybrid ZnO/ch-itosan antimicrobial nanoparticles[J]. ACS Applied Materials & Interfaces, 2014,6(2):1164-1172.
doi: 10.1021/am404852d |
[55] |
UGR S S, SARIISIK M, AKTAS A H, et al. Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method[J]. Nanoscale Research Letters, 2010,5(7):1204-1210.
doi: 10.1007/s11671-010-9627-9 pmid: 20596450 |
[1] | 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124. |
[2] | 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111. |
[3] | 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30. |
[4] | 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108. |
[5] | 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106. |
[6] | 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190. |
[7] | 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128. |
[8] | 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134. |
[9] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[10] | 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98. |
[11] | 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7. |
[12] | 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120. |
[13] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[14] | 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97. |
[15] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
|