纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 167-174.doi: 10.13475/j.fzxb.20191002508

• 综合述评 • 上一篇    下一篇

相变调温纺织品制备方法的研究进展

陈云博1, 朱翔宇1, 李祥1, 余弘2, 李卫东2, 徐红1, 隋晓锋1()   

  1. 1.东华大学 化学化工与生物工程学院, 上海 201620
    2.上海市质量监督检验技术研究院, 上海 200040
  • 收稿日期:2019-10-12 修回日期:2020-03-17 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 隋晓锋
  • 作者简介:陈云博(1991—),男,博士生。主要研究方向为智能调温纺织品。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232018A3-04)

Recent advance in preparation of thermo-regulating textiles based on phase change materials

CHEN Yunbo1, ZHU Xiangyu1, LI Xiang1, YU Hong2, LI Weidong2, XU Hong1, SUI Xiaofeng1()   

  1. 1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    2. Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200040, China
  • Received:2019-10-12 Revised:2020-03-17 Online:2021-01-15 Published:2021-01-21
  • Contact: SUI Xiaofeng

摘要:

为明晰制备工艺对调温纺织品性能的影响,综述了相变调温纺织品的2种制备方法:即在中空纤维中填充相变材料或将相变材料加入纺丝液制备相变纤维,再经织造形成相变织物;或者通过直接填充、表面整理、表面接枝改性等直接复合方式获得相变织物。分析认为:中空纤维填充法对选用的纤维材料要求较高;直接填充法工艺简单、操作方便,但会使纺织品舒适性变差;微胶囊纺丝和微胶囊表面整理的方法已实现工业化,但所得纺织品的焓值较低;静电纺丝法不易实现大规模工业化;表面接枝法能够实现相变材料与纺织品的耐久性结合,但工艺复杂繁琐;最后对相变材料的调温纺织品未来的发展方向进行了展望。

关键词: 调温纺织品, 相变材料, 微胶囊, 制备方法, 直接填充法, 静电纺丝法

Abstract:

In order to clarify the effect of preparation process on the properties of temperature adjusted textiles, the paper reviewed recent reports dealing with preparation of thermo-regulating textiles using phase change materials (PCMs). Two strategies could be used to incorporate PCMs: they could be introduced either to filling hollow filaments or after the spinning stage, or to fabrics by direct filling, surface grafting, or coating of phase change microcapsules. Fabrication of phase-changing yarns via filling hollow filaments with PCMs is applicable only to a limited amount of fiber materials. Direct filling of woven fabrics is simple and convenient, yet at the cost of handle and comfortableness of the finished fabric. Spinning of or finishing with PCM microcapsules have been industrialized. However, the amount of PCMs incorporated tends to be low. The electrospinning method is not easy to be industrialized. The surface grafting method yielded textiles with good and durable temperature regulating properties, yet suffered from complicated processing. Finally, the future development of temperature regulating textiles with phase change materials is prospected.

Key words: thermo-regulating textiles, phase change material, microcapsules, preparation method, direct filling method, electrospinning method

中图分类号: 

  • TS195.6

表1

中空纤维填充法制备调温纤维"

相变材料 纤维材料 PCMs质量
分数/%
熔融焓/
(J·g-1)
参考
文献
LA 木棉纤维 165.60 [6]
LA 木棉纤维 82.70 146.80 [7]
PEG-600 粘胶纤维 42.60
PEG-3350 聚丙烯纤维 35.60 [8]
PEG-400 粘胶纤维 34.30
PEG-400 聚丙烯纤维 28.30 [9]
PG/NPG 聚酯纤维 24.00 [10]
柔性石蜡 聚丙烯纤维 52.42 73.90 [11]
碳纳米管/聚丙烯纤维 79.53 107.60
赤藓糖醇 木棉纤维 87.42 298.50 [12]
甘露醇 92.54 297.80

表2

微胶囊纺丝法制备调温纤维"

壳材 芯材 微胶囊焓值/(J·g-1) 纤维 整理方法 纤维焓值/(J·g-1) 参考文献
MF 正十八烷 133.37 PBS纤维 熔融纺丝 5.76 [16]
MF 正十八烷 180.00 聚丙烯纤维 熔融纺丝 9.20 [17]
丙烯酸酯基共聚物 正十八烷 187.80 聚乙烯纤维 熔融纺丝 9.30 [18]
海藻酸钠纤维 湿法纺丝 124.10
正十八烷 145.00 AN/MA纤维 熔融纺丝 23.00 [19]
丙烯酸树脂 石蜡 PVDF纤维 静电纺丝 23.66 [20]
SiO2 石蜡 PVA纤维 湿法纺丝 45.39 [21]
聚酰胺 石蜡 聚丙烯腈纤维 湿法纺丝 60.10 [22]

表3

复合纺丝法制备调温纤维"

相变材料 纤维材料 焓值/ (J·g-1) 参考文献
脂肪酸酯和高级脂肪族醇 聚酰胺6 66.12 [23]
PEG 聚丙烯 20.10 [24]
正十九烷 聚丙烯 [25]
正二十烷 24.00
正二十烷 聚丙烯 50.80 [26]
脂肪酸酯和高级脂肪族醇 聚乙烯 62.43 [27]

表4

静电纺丝法制备调温纤维"

相变材料 支撑材料 添加剂 PCM质量分数/% 熔融焓/(J·g-1) 熔融温度/℃ 参考文献
LA/PA PET Ag 49.50 70.03 36.59 [30]
石蜡 PAN Cs0.32WO3 54.30 60.31 35.37 [31]
正十八烷 SiO2/PVP 45.00 114.00 27.00 [32]
LA PA6 CNTs 49.50 61.39 44.93 [33]
LA PET SiO2 40.76 62.90 46.00 [28]
LA PA6 60.00 74.12 44.71 [34]
PEG-1000 PAN CNTs 50.00 83.20 47.18 [35]
PEG-6000 PA66 56.52 85.42 59.76 [36]
PEG-1000 CAb 50.00 86.03 58.47 [37]
CA/SA PET 66.67 95.24 31.63 [38]
CA/MA/SA CAb 83.30 101.80 21.90 [39]
CA/LA SiO2 82.00 90.40 22.70 [40]
CA/PA SiO2 84.20 108.60 28.10
PEG PVP 石墨烯 110.78 22.71 [41]
CA PA6 75.40 107.60 31.61 [42]
CA/PA PA6 81.90 113.20 25.41
PEG-2000 PVP 68.00 116.20 59.73 [43]

表5

直接填充法制备调温纺织品"

相变材料 相变温度/℃ 其他装置 参考文献
大胶囊 [45]
PCM 18 [47]
PCM 21
PCM 28
微胶囊 [46]
PCM 固体干燥剂 [48]
PCM 18 [49]
PCM 微型风扇 [50]
大胶囊 [51]
PCM 24 [52]
PCM 28
PCM 10 [53]
PCM 20
PCM 30

表6

表面整理法制备调温纺织品"

壳材 芯材 微胶囊焓值/(J·g-1) 织物 整理方法 织物焓值/(J·g-1) 参考文献
P(MMA-co-MAA) 正十八烷 70.60 轧—烘—焙 [54]
正二十烷 145.80 轧—烘—焙
壳聚糖 正二十烷 120.50 竭染法 [55]
明胶/海藻酸钠/黏土 正二十烷 114.70 轧—烘—焙 [56]
P(MMA-AA-DVB) 正十八烷 234.00 轧—烘—焙 [57]
PS 石蜡 104.70 涂层 7.60 [58]
PMMA Na2SO4·10H2O 127.00 轧—烘—焙 12.30 [59]
PMMA 十二醇/月桂酸 118.00 轧—烘—焙 20.18 [60]
聚丙烯酸丁酯 正十六烷 120.20 涤纶/棉 轧—烘—焙 28.59 [61]
MF 正十八烷 173.50 涤纶(针织物) 印花 36.50 [62]
涂层 23.40
轧—烘—焙 13.40
聚硅氧烷 正二十烷 146.90 聚酯织物 涂层 34.50 [63]

表7

表面接枝法制备的调温纺织品"

相变材料 方法 织物 熔融焓/
(J·g-1)
参考
文献
PEG-10000 接枝 PET 112.02 [67]
PEG-1000 接枝 33.80 [68]
PEG-1000 接枝 纤维素 92.70 [69]
PEG-2000 接枝 PVA纤维 56.25 [70]
PEG-8000 接枝 56.00 [71]
正十六烷 接枝 [72]
乙基纤维素微胶囊 接枝 [73]
PEG-1500 接枝 聚乳酸纤维 43.02 [74]
PET纤维 38.96
[1] 侯翠芳. 智能调温立体结构机织物设计[J]. 棉纺织技术, 2010,38(9):36-38.
HOU Cuifang. Design of intelligent temperature adjusting three-dimensional structure woven fabric[J]. Cotton Textile Technology, 2010,38(9):36-38.
[2] 阎若思, 王瑞, 刘星. 相变材料微胶囊在蓄热调温智能纺织品中的应用[J]. 纺织学报, 2014,35(9):155-164.
YAN Ruosi, WANG Rui, LIU Xing. Application of microencapsulated phase-change materials in intelligent heat-storage and thermo-regulated textile[J]. Journal of Textile Research, 2014,35(9):155-164.
[3] 弋梦梦, 廖喜林, 耿长军, 等. 智能温控纺织品研究进展及应用[J]. 天津纺织科技, 2018,225(3):79-81.
YI Mengmeng, LIAO Xilin, GENG Changjun, et al. Research progress and application of intelligent temperature control textiles[J]. Tianjin Textile Science & Technology, 2018,225(3):79-81.
[4] IQBAL K, KHAN A, SUN D, et al. Phase change materials, their synjournal and application in textiles:a review[J]. Journal of The Textile Institute, 2019,110(4):625-638.
[5] MONDAL S. Phase change materials for smart textiles: an overview[J]. Applied Thermal Engineering, 2008,28(11/12):1536-1550.
[6] SONG S, ZHAO T, QIU F, et al. Natural microtubule encapsulated phase change material with high thermal energy storage capacity[J]. Energy, 2019,172:1144-1150.
[7] SONG S, ZHAO T, ZHU W, et al. Natural microtubule-encapsulated phase-change material with simultaneously high latent heat capacity and enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces, 2019,11(23):20828-20837.
doi: 10.1021/acsami.9b04523 pmid: 31117448
[8] VIGO T L, FROST C M, BRUNO J S, et al. Temperature adaptable textile fibers and method of preparing same: US 4851291[P]. 1989 -07-25.
[9] VIGO T L, FROST C M. Temperature adaptable hollow fibers containing polyethylene glycols[J]. Journal of Coated Fabrics, 1983,12(4):243-254.
doi: 10.1177/152808378301200405
[10] 李发学, 张广平, 俞建勇. 三羟甲基乙烷/新戊二醇二元体系填充涤纶中空纤维的研究[J]. 东华大学学报(自然科学版), 2003,29(6):15-17.
LI Faxue, ZHANG Guangping, YU Jianyong. Researching for terephthalate/neopentyl glycol binary system was filled with polyester hollow fiber[J]. Journal of Donghua Univer-sity(Natural Science), 2003,29(6):15-17.
[11] LUO D, WEI F, SHAO H, et al. Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials[J]. Journal of Materials Science, 2018,53(22):15500-15513.
doi: 10.1007/s10853-018-2722-5
[12] AN J R, LIANG W D, MU P, et al. Novel sugar alcohol/carbonized kapok fiber composites as form-stable phase-change materials with exceptionally high latent heat for thermal energy storage[J]. ACS Omega, 2019,4(3):4848-4855.
doi: 10.1021/acsomega.8b03373 pmid: 31459669
[13] 赵亮. 再生蚕丝储热调温材料的制备与性能研究[D]. 北京:清华大学, 2017: 20-35.
ZHAO Liang. Preparation and characterization of regenerated silk composite for thermal regulation[D]. Beijing: Tsinghua University, 2017: 20-35.
[14] HARTMANN M, WORLEY J B, NORTH M. Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof:US 0272863[P]. 2015 -10-27.
[15] 李昌垒, 刘长军, 马君志, 等. 一种光热转换、蓄热调温纤维素纤维及其制备方法: 201910700950.8 [P]. 2019 -07-31.
LI Changlei, LIU Changjun, MA Junzhi, et al. The preparation method thereof photothermal conversion, heat storage and temperature regulation cellulose fiber: 201910700950.8 [P]. 2019 -07-31.
[16] 闫丽佳. 相变材料微胶囊的制备及其应用[D]. 北京: 北京服装学院, 2010: 5-11.
YAN Lijia. Preparation and application of phase change material microcapsules[D]. Beijing: Beijing Institute of Fashion Technology, 2010: 5-11.
[17] IQBAL K, SUN D. Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials[J]. Renewable Energy, 2014,71:473-479.
doi: 10.1016/j.renene.2014.05.063
[18] LI W, MA Y J, TANG X F, et al. Composition and characterization of thermoregulated fiber containing acrylic-based copolymer microencapsulated phase-change mater-ials (MicroPCMs)[J]. Industrial & Engineering Chemistry Research, 2014,53(13):5413-5420.
[19] GAO X Y, HAN N, ZHANG X X, et al. Melt-processable acrylonitrile-methyl acrylate copolymers and melt-spun fibers containing microPCMs[J]. Journal of Materials Science, 2009,44(21):5877-5884.
doi: 10.1007/s10853-009-3830-z
[20] 马露, 杨雪珂, 高倩钰, 等. 静电纺相变纤维的制备及性能表征[J]. 国际纺织导报, 2019,46(4):4-8.
MA Lu, YANG Xueke, GAO Qianyu, et al. Preparation and chara cterization of phase change fiber by electrospinning[J]. Melliand China, 2019,46(4):4-8.
[21] LI J, WANG B, YE G, et al. Study of synthesizing energy storage microcapsules in PVA spinning solution and thermal regulating fibers prepared by this solution[J]. Fibers and Polymers, 2013,14(4):537-541.
doi: 10.1007/s12221-013-0537-1
[22] 于海飞. 相变微胶囊聚丙烯腈纤维的制备及性能研究[D]. 大连: 大连工业大学, 2011: 41-54.
YU Haifei. The study on preparation and properties of microencapsulated phase change materials/PVA fiber[D]. Dalian: Dalian Polytechnic University, 2011: 41-54.
[23] 吴超, 邹黎明, 张绳凯, 等. PA6/CPCM储能调温纤维的制备及表征[J]. 合成纤维工业, 2015(2):14-18.
WU Chao, ZOU Liming, ZHANG Shengkai, et al. Preparation and characterization of PA6/CPCM energy storage and temperature regulating fiber[J]. China Synthetic Fiber Industry, 2015(2):14-18.
[24] 张兴祥, 王学晨, 胡灵, 等. PP/PEG蓄热调温复合纤维的纺丝与性能[J]. 天津工业大学学报, 1999,18(1):1-4.
ZHANG Xingxiang, WANG Xuechen, HU Ling, et al. Spinning and properties of PP/PEG composite fibers for heat storaging and thermoregulating[J]. Journal of Tiangong University, 1999,18(1):1-4.
[25] 张兴祥, 王学晨, 牛建津, 等. 蓄热调温纤维的纺制及其性能研究[J]. 天津工业大学学报, 2005,27(2):1-5.
ZHANG Xingxiang, WANG Xuechen, NIU Jianjin, et al. Research on spinning and properties of thermo-regulated fibers[J]. Journal of Tiangong University, 2005,27(2):1-5
[26] ZHANG X, WANG X, ZHANG H, et al. Effect of phase change material content on properties of heat-storage and thermo-regulated fibres nonwoven[J]. Indian Journal of Fibre & Textile Research, 2003,28(3):265-269.
[27] 花建兵, 邹黎明, 倪建华, 等. CPCM/PE蓄热调温纤维的制备及其结构与性能研究[J]. 合成纤维工业, 2016(6):11-15.
HUA Jianbing, ZOU Liming, NI Jianhua, et al. Preparation, structure and properties of CPCM/PE thermo-regulated fiber[J]. China Synthetic Fiber Industry, 2016 (6):11-15.
[28] CAI Y, KE H, DONG J, et al. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials[J]. Applied Energy, 2011,88(6):2106-2112.
doi: 10.1016/j.apenergy.2010.12.071
[29] 徐刚, 陆源, 肖秀娣, 等. 一种利用同轴静电纺丝技术制备核壳结构的相变储热纤维膜的方法: 201810298468.1[P]. 2018 -09-25.
XU Gang, LU Yuan, XIAO Xiuti, et al. A method for preparing a phase change heat storage fiber membrane with core shell structure by coaxial electrostatic spinning technology: 201810298468.1[P]. 2018 -09-25.
[30] KE H. Preparation of electrospun LA-PA/PET/Ag form-stable phase change composite fibers with improved thermal energy storage and retrieval rates via electrospinning and followed by UV irradiation photoreduction method[J]. Fibers and Polymers, 2016,17(8):1198-1205.
doi: 10.1007/s12221-016-6456-1
[31] LU Y, XIAO X, FU J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning[J]. Chemical Engineering Journal, 2019,355:532-539.
doi: 10.1016/j.cej.2018.08.189
[32] MCCANN J T, MARQUEZ M, XIA Y. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006,6(12):2868-2872.
pmid: 17163721
[33] CAI Y B, XU X L, GAO C T, et al. Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite fibers consisting of laurie acid and polyamide 6 as thermal energy storage materials[J]. Fibers and Polymers, 2012,13(7):837-845.
doi: 10.1007/s12221-012-0837-x
[34] CAI Y, GAO C, XU X, et al. Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy[J]. Solar Energy Materials and Solar Cells, 2012,103:53-61.
doi: 10.1016/j.solmat.2012.04.031
[35] ESMAEILZADEH Z, REZAEI B, SHOUSHTARI A M, et al. Enhancing the thermal characteristics of shape-stabilized phase change nanocomposite nanofibers by incorporation of multiwalled carbon nanotubes within the nanofibrous structure[J]. Advances in Polymer Technology, 2018,37(1):185-193.
doi: 10.1002/adv.21655
[36] SEIFPOOR M, NOURI M, MOKHTARI J. Thermo-regulating nanofibers based on nylon 6,6/polyethylene glycol blend[J]. Fibers and Polymers, 2011,12(6):706-714.
doi: 10.1007/s12221-011-0706-z
[37] CHEN C, WANG L, HUANG Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite[J]. Polymer, 2007,48(18):5202-5207.
doi: 10.1016/j.polymer.2007.06.069
[38] KE H, LI D, ZHANG H, et al. Electrospun form-stable phase change composite nanofibers consisting of capric acid-based binary fatty acid eutectics and polyethy-lene[J]. Fibers and Polymers, 2013,14(1):89-99.
doi: 10.1007/s12221-013-0089-4
[39] CAI Y, LIU M, SONG X, et al. A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric-myristic-stearic acid ternary eutectic mixture for thermal energy storage/retrieval[J]. RSC Advances, 2015,5(102):84245-84251.
doi: 10.1039/C5RA14876F
[40] ZONG X, CAI Y, SUN G, et al. Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval[J]. Solar Energy Materials and Solar Cells, 2015,132:183-190.
doi: 10.1016/j.solmat.2014.08.030
[41] 张焕芝, 季蓉, 夏永鹏, 等. 一种复合相变纳米纤维材料及其制备方法: 201810772149.X [P]. 2018 -11-06.
ZHANG Huanzhi, JI Rong, XIA Yongpeng, et al. Preparation method for a composite phase change nanofiber material: 201810772149.X [P]. 2018 -11-06.
[42] CAI Y, XU X, GAO C, et al. Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide 6 nanofibers for thermal energy storage[J]. Materials Letters, 2012,89:43-46.
doi: 10.1016/j.matlet.2012.08.067
[43] SHI Q, LIU Z, JIN X, et al. Electrospun fibers based on polyvinyl pyrrolidone/Eu-polyethylene glycol as phase change luminescence materials[J]. Materials Letters, 2015,147:113-115.
doi: 10.1016/j.matlet.2015.02.040
[44] REINERTSEN R E, FAEREVIK H, HOLBO K, et al. Optimizing the performance of phase-change materials in personal protective clothing systems[J]. International Journal of Occupational Safety and Ergonomics, 2008,14(1):43-53.
doi: 10.1080/10803548.2008.11076746 pmid: 18394325
[45] LI W, ZHANG X X, WANG X C, et al. Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage[J]. Energy, 2012,38(1):249-254.
doi: 10.1016/j.energy.2011.12.005
[46] 兰培强, 夏抒. 一种相变恒温床垫: 201510318017.6 [P]. 2015 -11-11.
LAN Peiqiang, XIA Zhu. A phase change thermostatic mattress: 201510318017.6 [P]. 2015 -11-11.
[47] ITANI M, GHADDAR N, OUAHRANI D, et al. An optimal two-bout strategy with phase change material cooling vests to improve comfort in hot environment[J]. Journal of Thermal Biology, 2018,72:10-25.
doi: 10.1016/j.jtherbio.2017.12.005 pmid: 29496002
[48] ITANI M, GHADDAR N, GHALI K. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environ-ment[J]. Energy Conversion and Management, 2017,140:218-227.
doi: 10.1016/j.enconman.2017.03.011
[49] OUAHRANI D, ITANI M, GHADDAR N, et al. Experimental study on using PCMs of different melting temperatures in one cooling vest to reduce its weight and improve comfort[J]. Energy and Buildings, 2017,155:533-545.
[50] WAN X, WANG F, UDAYRAJ. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018,126:636-648.
[51] 王学晨, 张兴祥, 牛建津. 一种调温服装: 200420029865.2[P]. 2005 -09-21.
WANG Xuechen, ZHANG Xingxiang, NIU Jianjin. A temperature-regulating garment: 200420029865.2[P]. 2005 -09-21.
[52] GAO C, KUKLANE K, HOLMR I. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011,111(6):1207-1216.
doi: 10.1007/s00421-010-1748-4 pmid: 21127896
[53] HOUSE J R, LUNT H C, TAYLOR R, et al. The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting tempera-tures[J]. European Journal of Applied Physiology, 2013,113(5):1223-1231.
doi: 10.1007/s00421-012-2534-2 pmid: 23160652
[54] AKSOY S A, ALKAN C, TOZUM M S, et al. Preparation and textile application of poly(methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules[J]. Journal of The Textile Institute, 2017,108(1):30-41.
[55] GENC E, AKSOY S A. Fabrication of microencapsulated PCMs with nanoclay doped chitosan shell and their application to cotton fabric[J]. Tekstil Ve Konfeksiyon, 2016,26(2):180-188.
[56] DEMIRBAG S, AKSOY S A. Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics[J]. Fibers and Polymers, 2016,17(3):408-417.
[57] JANTANG S, CHAIYASAT P. High performance poly(methyl methacrylate-acrylic acid-divinylbenzene) microcapsule encapsulated heat storage material for thermoregulating textiles[J]. Fibers and Polymers, 2018,19(10):2039-2048.
[58] SÁNCHEZ P, SÁNCHEZ-FERNANDEZ M V, ROMERO A, et al. Development of thermo-regulating textiles using paraffin wax microcapsules[J]. Thermochimica Acta, 2010,498(1/2):16-21.
[59] IQBAL K, SUN D. Synjournal of nanoencapsulated Glauber's salt using PMMA shell and its application on cotton for thermoregulating effect[J]. Cellulose, 2018,25(3):2103-2113.
[60] ZHANG G Q, CAI C W, ZHU G C, et al. Preparation and properties of high thermostability phase-change material microcapsules [C]//LI Y, GAO L, XU W L. International Symposium of Textile Bioengineering and Informatics. Hong Kong: Textile Bioengineering & Informatics Society Ltd, 2018: 840-847.
[61] ALAY S, GODE F, ALKAN C. Synjournal and thermal properties of poly(n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics[J]. Journal of Applied Polymer Science, 2011,120(5):2821-2829.
[62] NEJMAN A, CIESLAK M, GAJDZICKI B, et al. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric[J]. Thermochimica Acta, 2014,589:158-163.
[63] KARASZEWSKA A, KAMINSKA I, NEJMAN A, et al. Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer[J]. Materials Chemistry and Physics, 2019,226:204-213.
[64] 胡雪丽, 朱剑, 宫怀瑞, 等.一种调温纺织品及其生产方法: 201911000034[P]. 2019 -10-21.
HU Xueli, ZHU Jian, GONG Huairui, et al. The production method thereof temperature-regulating textile: 201911000034[P]. 2019 -10-21.
[65] 周岚, 刘国金, 张国庆, 等.一种蓄热调温喷印液及数码喷印制备蓄热调温纺织品的方法: 201910276152[P]. 2019 -04-08.
ZHOU Lan, LIU Guojin, ZHANG Guoqing, et al. A method for preparing temperature-regulating printing fluid and temperature-regulating textiles by digital printing: 201910276152[P]. 2019 -04-08.
[66] 丁爱军, 肖吕明, 高杰, 等. 一种智能调温纺织品及其制备方法: 201410407505X[P]. 2014 -11-19.
DING Aijun, XIAO Lvming, GAO Jie, et al. The invention relates to an intelligent temperature-regulating textile and a preparation method: 201410407505X[P]. 2014 -11-19.
[67] 王艳秋, 金万祥, 缪伟伟, 等. 聚乙二醇/涤纶接枝共聚固-固相转变贮热材料[J]. 应用化工, 2009,38(1):28-31.
WANG Yanqiu, JIN Wanxiang, LIAO Weiwei, et al. Polyethylene glycol-polyester grafts solid-solid phase change storage energy materials[J]. Applied Chemical Industry, 2009,38(1):28-31.
[68] KURU A, AKSOY S A. Cellulose-PEG grafts from cotton waste in thermo-regulating textiles[J]. Textile Research Journal, 2014,84(4):337-346.
[69] GOK O, ALKAN C, KONUKLU Y. Developing a poly(ethylene glycol)/cellulose phase change reactive composite for cooling application[J]. Solar Energy Materials and Solar Cells, 2019,191:345-349.
[70] LI Z, HE W, XU J, et al. Preparation and characterization of in situ grafted/crosslinked polyethylene glycol/polyvinyl alcohol composite thermal regulating fiber[J]. Solar Energy Materials and Solar Cells, 2015,140:193-201.
[71] KUMAR A, KULKARNI P S, SAMUI A B. Polyethylene glycol grafted cotton as phase change polymer[J]. Cellulose, 2014,21(1):685-696.
[72] BENMOUSSA D, MOLNAR K, HANNACHE H, et al. Novel thermo-regulating comfort textile based on poly(allyl ethylene diamine)/n-hexadecane microcapsules grafted onto cotton fabric[J]. Advances in Polymer Technology, 2018,37(2):419-428.
[73] BADULESCU R, VIVOD V, JAUSOVEC D, et al. Grafting of ethylcellulose microcapsules onto cotton fibers[J]. Carbohydrate Polymers, 2008,71(1):85-91.
[1] 王亮, 马晓光, 李俊君, 杨州. 热敏变色微胶囊的变色色谱拓展及其应用[J]. 纺织学报, 2020, 41(09): 88-94.
[2] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[3] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[4] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[5] 王森, 陈英. 纳米TiO2 稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[6] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[7] 杨建, 张国庆, 刘国金, 柯孝明, 周岚. 复合相变微胶囊制备及其在棉织物上的应用[J]. 纺织学报, 2019, 40(10): 127-133.
[8] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[9] 刘菲, 李秋瑾, 巩继贤, 李政, 刘秀明, 张健飞. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019, 40(02): 114-118.
[10] 王亚 黄菁菁 张如全 . 艾蒿油-壳聚糖抗菌微胶囊的制备及其应用[J]. 纺织学报, 2018, 39(10): 99-103.
[11] 张涛 李宏伟 王建明 张梅 苗晓光. 端羟基聚丁二烯聚氨酯相变微胶囊的制备及其性能[J]. 纺织学报, 2018, 39(03): 86-91.
[12] 王瑞 孙艳丽 刘星 杨华 李博. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018, 39(02): 119-125.
[13] 李孟轩 王瑞 刘星 杨华 丁艳然. 老颧草微胶囊复合织物的制备及其药物释放机制[J]. 纺织学报, 2018, 39(02): 138-143.
[14] 康卫民 范兰兰 邓南平 何宏升 鞠敬鸽 程博闻 . 静电纺多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176.
[15] 郝鸿飞 刘晓艳. 胆固醇液晶热致变色微胶囊的制备及其性能[J]. 纺织学报, 2017, 38(06): 75-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!