纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 16-21.doi: 10.13475/j.fzxb.20200504006

• 纤维材料 • 上一篇    下一篇

可降解聚羟基乙酸低聚物改性聚酯的合成及其性能

靳琳琳1, 田俊凯2, 李家炜1, 戚栋明1(), 沈晓炜2, 邬春涛3   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.浙江卫星石化股份有限公司, 浙江 嘉兴 314000
    3.宁波市生态环境局, 浙江 宁波 315000
  • 收稿日期:2020-05-19 修回日期:2020-09-08 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 戚栋明
  • 作者简介:靳琳琳(1986—),女,博士生。主要研究方向为聚合物材料改性。
  • 基金资助:
    浙江省重点研发计划项目(2020C01148);浙江省基础公益研究计划项目(LGG20E030006);国家级大学生创新创业训练计划项目(201910338007);浙江理工大学基本科研业务费专项资金资助项目(2019Q021)

Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester

JIN Linlin1, TIAN Junkai2, LI Jiawei1, QI Dongming1(), SHEN Xiaowei2, WU Chuntao3   

  1. 1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Satellite Petrochemical Co., Ltd., Jiaxing, Zhejiang 314000, China
    3. Ningbo Municipal Bureau of Ecology and Environment, Ningbo, Zhejiang 315000, China
  • Received:2020-05-19 Revised:2020-09-08 Online:2021-01-15 Published:2021-01-21
  • Contact: QI Dongming

摘要:

为改善芳香族聚酯(PET)的降解性能,采用可降解的聚羟基乙酸(PGA)低聚物,利用熔融缩聚和固相缩聚联用的工艺路线,对聚酯进行共聚改性合成聚对苯二甲酸乙二醇酯-co-聚乙醇酸共聚酯(PET-co-PGA)。借助核磁共振波谱仪、差示扫描量热仪、拉伸试验机、扫描电子显微镜和荧光显微镜等对共聚酯的结构、特征黏度、结晶行为、力学性能及降解性能进行表征与分析。结果表明:与纯PET相比,共聚改性破坏了PET-co-PGA的结构规整性,随着PGA质量分数的增加,共聚酯的熔点下降,结晶温度降低,结晶能力逐渐降低;在低PGA添加量时共聚酯具有更好的韧性,当PGA质量分数为5%时,共聚酯的断裂伸长率从13.1%增加至15.0%;改性后聚酯降解速率随着PGA质量分数增加而逐渐提升。

关键词: 改性聚酯, 聚羟基乙酸, 聚对苯二甲酸乙二醇酯, 共聚改性, 熔融缩聚, 固相缩聚

Abstract:

In order to improve the degradation performance of aromatic poly (ethylene terephthalate) (PET), a novel polyethylene terephthalate-co-polyglycolic acid copolymer (PET-co-PGA) was synthesized by copolymerization modification of polyester with degradable polyglycolic acid (PGA) oligomer, through combining melt polycondensation and solid-phase polycondensation process. The structure, intrinsic viscosity, crytallization behavior and degradation property of the novel copolyester were characterized and analyzed by using nuclear magnetic resonance spectrometer, differential scanning calorimeter, tensile tester, scanning electron microscope and fluorescence microscope. The results show that the introduction of PGA damages the regularity of PET and results in the decrease of the melting point, crystallization temperature and crystallization ability. The tensile experiments show that the synthesized copolyester with the low volume of addition of PGA has better tenacity compared with pure PET. When 5% PGA is added,the elongation at the break of the copolyester is increased from 13.1% to 15.0%. The degradation rate of pre-modified PET gradually increases with the amount of PGA added.

Key words: modified polyester, polyglycolic acid, poly (ethylene terephthalate), modification by copolymerization, melt polycondensation, solid state polycondensation

中图分类号: 

  • TS193.5

图1

聚羟基乙酸低聚物改性聚酯的合成路线"

表1

聚羟基乙酸低聚物改性聚酯投料比"

样品
编号
PTA的量/
mol
EG的量/
mol
PGA质量
分数/%
1# 0.9 1.2 0
2# 0.9 1.2 1
3# 0.9 1.2 5
4# 0.9 1.2 10
5# 0.9 1.2 15

图2

PET-co-PGA改性聚酯的化学结构式和核磁共振氢谱图"

图3

纯PET和PET-co-PGA共聚酯的DSC曲线"

表2

纯PET和PET-co-PGA共聚酯的DSC数据"

样品
编号
Tg/
Tc/
Tc-Tg/
Tm/
ΔHc/
(J·g-1)
ΔHm/
(J·g-1)
1# 81.94 180 98.06 248 47.32 67.57
2# 78.68 172 93.32 239 80.05 69.63
3# 75.23 140 64.77 218 17.50 57.10
4# 71.84 191 33.51
5# 67.21 173 8.41

表3

PET-co-PGA共聚酯的力学性能"

样品
编号
拉伸断裂强度/
MPa
弹性模量/
MPa
断裂伸长率/
%
1# 67.67±0.4 589.03±2.5 13.09±0.20
2# 68.97±0.5 590.19±1.5 13.11±0.15
3# 69.68±0.4 600.32±2.0 15.28±0.22
4# 58.03±0.5 535.48±1.8 10.94±0.24
5# 55.47±0.4 523.33±1.7 9.64±0.28

图4

共聚酯碱性条件下的降解行为"

图5

共聚酯纤维降解过程的扫描电镜照片(×5 000)"

图6

共聚酯纤维在降解过程中结构形态变化的荧光照片"

[1] 黄继明, 刘润清, 韦恩光, 等. CaO/MgO 复合固体碱催化剂催化降解 PET[J]. 工程塑料应用, 2018,46(7):46-50.
HUANG Jiming, LIU Runqing, WEI Enguang, et al. Degradation behaviors of PET catalyzed by CaO/MgO composite as solid base catalyst[J]. Engineering Plastics Application, 2018,46(7):46-50.
[2] 郑宁来. 2020 年世界 PET 产销情况[J]. 聚酯工业, 2017,30(2):4.
ZHENG Ninglai. World PET production and sales in 2020[J]. Polyester Industry, 2017,30(2):4.
[3] 刘红阳. 废旧PET/PC塑料回收与化学再生利用现状[J]. 橡塑资源利用, 2005(6):23-27.
LIU Hongyang. Current situation of recycling and chemical recycling of waste PET/PC plastics[J]. Rubber and Plastic Resources Utilization, 2005 (6):23-27.
[4] 李永真, 王贵珍, 吕静, 等. 废PET瓶回收再生技术及应用进展[J]. 化学工程与装备, 2010(6):145-146.
LI Yongzhen, WANG Guizhen, LÜ Jing, et al. Recycling technology and application progress of waste PET bottles[J]. Chemical Engineering and Equipment, 2010(6):145-146.
[5] MULLER R J, KLEEBERG I, DECKWER W D. Biodegradation of polyesters containing aromatic constituents[J]. Journal of Biotechnology, 2001,86:87-95.
doi: 10.1016/s0168-1656(00)00407-7 pmid: 11245897
[6] URBANEK A K, MIRONCZUK A M, GARCIA M A, et al. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics[J]. Proteins and Proteomics, 2020,1868(2):1-9.
[7] 高翠丽, 夏延致, 纪全, 等. PET/PLA共混物的降解性[J]. 化学学报, 2006,9(57):2237-2240.
GAO Cuili, XIA Yanzhi, JI Quan, et al. Biodegradability of polyblends PET/PLA[J]. Journal of Chemical Industry Anengineering, 2006,9(57):2237-2240.
[8] OLEWNIK E, CZERWINSK W. Synjournal, structural study and hydrolytic degradation of copolymer based on glycolic acid and bis-2-hydroxyethyl terephthalate[J]. Polymer Degradation and Stability, 2009,94:221-226.
[9] 孙亚芳, 陈世昌, 陈文兴, 等. PET固相缩聚工艺与反应动力学机理研究[J]. 浙江理工大学学报(自然科学版), 2017,37(2):226-231.
SUN Yafang, CHEN Shichang, CHEN Wenxing, et al. Study on the solid state polycondensation process and reaction kinetics mechanism of PET[J]. Journal of Zhejiang University of Science and Technology(Natural Science Edition), 2017,37(2):226-231.
[10] KASMI N, MAJDOUB M, PAPAGERORGIOU G Z, et al. Solid-state polymerization of poly(ethylene furanoate) biobased polyester: I: effect of catalyst type on molecular weight increase[J]. Polymers, 2017,9(11):607.
[11] 山根和行, 佐藤浩幸, 川上进盟. 聚乙醇酸树脂组合物及其成型物: 200480008493.8 [P]. 2006 -05-03.
YAMANE Kazuyuki, SATO Hiroyuki, KAWAKAMI Yukichika. Polyglycolic acid resin composition and its products: 200480008493.8[P]. 2006 -05-03.
[12] LIU W D, QIU J H, FEI R H, et al. Manufac turing of thermally remoldable blends from epoxidized soybean oil and poly(lactic acid) via dynamic cross-linking in a twin-screw extruder[J]. Industrial & Engineering Chemistry Research, 2018,57:7516-7524.
[13] 陈玉君, 杨始堃, 李焕文, 等, 高特性度聚酯的研究:化学增粘法[J]. 广州化工, 1989,4:20-24.
CHEN Yujun, YANG Shikun, LI Huanwen, et al. Study on intrinsic viscosity polyester: chemical tackifying method[J]. Guangzhou Chemical Industry, 1989,4:20-24.
[14] SCHEIRS J, LONG T E. Modern polymer[M]. New York: John Wiley & Sons Ltd., 2003: 515-520.
[15] 郑今欢, 殷瑛, 关艳峰, 等. 碱处理与PTT纤维形态结构和力学性能的影响[J]. 纺织学报, 2006,27(12):44-47.
ZHENG Jinhuan, YIN Ying, GUAN Yanfeng, et al. Effect of alkali treatment on morphological structure and mechanical properties of PTT fiber[J]. Journal of Textile Research, 2006,27(12):44-47.
[16] MATOS M, SOUSA A F, FONSECAF A C, et al. A new generation of furanic copolyesters with enhanced degradability:poly(ethylene-2,5-furandicarboxylate)-co-poly(lactic acid)copolyesters[J]. Macromolecular Chemistry and Physics, 2014,215:2175-2184.
[1] 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34.
[2] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
[3] 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34.
[4] 张腾飞, 石禄丹, 胡红梅, 王宇, 王学利, 俞建勇. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019, 40(06): 1-7.
[5] 向国栋, 高庆文, 邓倩倩, 张须臻, 王秀华. 阳离子染料易染改性聚酯的固相缩聚工艺与性能[J]. 纺织学报, 2019, 40(04): 21-25.
[6] 王勇军 陈世昌 刘梅 曾卫卫 吕汪洋 张先明 陈文兴. 高分子量聚对苯二甲酸乙二醇酯中低聚物的提取及其表征[J]. 纺织学报, 2018, 39(11): 1-7.
[7] 林启松 江力 汪凯 张顺花. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018, 39(08): 22-26.
[8] 靳昕怡 王颖 朱志国 刘彦麟 王锐. 复合抑熔滴剂对阻燃聚酯共混物燃烧性能的影响[J]. 纺织学报, 2018, 39(08): 15-21.
[9] 娄佳慧 王锐 张文娟 董振峰 朱志国 张秀芹 刘继广. 有机钛-硅催化剂合成聚酯的动力学研究[J]. 纺织学报, 2018, 39(07): 1-7.
[10] 孔抵柱 李家炜 徐红 张琳萍 钟毅 隋晓锋 毛志平. 环三磷腈和三嗪衍生物协同阻燃对聚酯性能的影响[J]. 纺织学报, 2017, 38(07): 11-17.
[11] 张静静 王颖 宋丹 国凤敏 陈超. 聚对苯二甲酸乙二醇酯与聚对苯二甲酸丁二醇酯的热分解性能[J]. 纺织学报, 2016, 37(07): 34-38.
[12] 陈佑宁, 张知侠. 乙二醇改性聚乳酸的直接熔融聚合法合成及表征[J]. 纺织学报, 2012, 33(3): 14-17.
[13] 倪永 刘志红 胡腾蛟. PET、PTT与PBT材料的定性与定量鉴别方法[J]. 纺织学报, 2012, 33(10): 28-32.
[14] 李唯唯;陈国强;张瑞欣. 高岭土改性聚酯纤维的染色性能[J]. 纺织学报, 2008, 29(9): 87-90.
[15] 宋移团;王锐;张大省. 衣康酸/丙烯酸与聚酯织物接枝共聚性能[J]. 纺织学报, 2007, 28(3): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!