纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 59-66.doi: 10.13475/j.fzxb.20200504408
CHEN Meiyu1,2(), LIU Yulin3, HU Geming3, SUN Runjun1,2
摘要:
为探究涡流纺纱线的包缠加捻与成纱力学性能的关系,从理论上分析了涡流纺纱线拉伸过程中的纤维形变与受力,详细研究了涡流压力和纺纱速度对涡流纺纱线力学性能的影响。结果表明:外层纤维螺旋包缠特性对涡流纺成纱的力学性能起着决定性作用,涡流压力和纺纱速度为影响涡流纺包缠和加捻效果的主要因素;当纺纱速度为280 m/min时,随着涡流压力的增加,涡流纺纱线的断裂比强度和弹性模量呈先增加后下降的变化趋势,而断裂伸长率基本不变,且当涡流压力为0.55 MPa时,涡流纺成纱力学性能最优;当涡流压力恒定为0.45 MPa时,随着涡流纺纱速度的增加,涡流纺纱线的断裂比强度、断裂伸长率均呈略微下降趋势,弹性模量呈现先下降后基本不变的趋势。
中图分类号:
[1] |
NAZAN Erdumlua, BULENT Ozipeka, WILLIAM Oxenham. Vortex spinning technology[J]. Textile Progress, 2012,44(3/4):141-174.
doi: 10.1080/00405167.2012.739345 |
[2] | 邹专勇, 梁方阁, 程隆棣, 等. 喷气涡流纺纱线成形机理与结构[J]. 上海纺织科技, 2007,35(7):5-6,8. |
ZOU Zhuanyong, LIANG Fangge, CHENG Longdi, et al. The yarn formation principle of jet vortex spinning and its structure[J]. Shanghai Textile Science & Technology, 2007,35(7):5-6,8. | |
[3] | 陈梁. 喷气涡流纺纱工艺及喷嘴装置研究[D]. 上海:东华大学, 2014: 14. |
CHEN Liang. Study on spinning process and jet vortex spinning nozzle device design[D]. Shanghai: Donghua University, 2014: 14. | |
[4] | 于津霞. 喷气涡流纺(MVS)成纱结构及其织物性能的研究[D]. 青岛:青岛大学, 2007: 11-17. |
YU Jinxia. Investigation on yarn structure and fabric properties of air-jet vortex spinning[D]. Qingdao: Qingdao University, 2007: 11-17. | |
[5] |
ZOU Zhuanyong, CHENG Longdi, XUE Wenliang, et al. A study of the twisted strength of the whirled airflow in murata vortex spinning[J]. Textile Research Journal, 2008,78(8):682-687.
doi: 10.1177/0040517508089753 |
[6] |
ZENG Yongchun, WAN Yuqin, YU Chongwen, et al. Controlling the air vortex twist in air-jet spinning[J]. Textile Research Journal, 2005,75(2):175-177.
doi: 10.1177/004051750507500216 |
[7] |
BASALl Guldemet, OXENHAM William. Effects of some process parameters on the structure and properties of vortex spun yarn[J]. Textile Research Journal, 2006,76(6):492-499.
doi: 10.1177/0040517506064253 |
[8] |
HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031.
doi: 10.1177/0040517515619354 |
[9] |
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Analysis of the fiber spatial trajectory in vortex spun yarn[J]. Textile Research Journal, 2009,79(10):924-929.
doi: 10.1177/0040517508095609 |
[10] | HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031. |
[11] | 何建, 裴泽光, 周键, 等. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019,40(5):136-143. |
HE Jian, PEI Zeguang, ZHOU Jian, et al. Online monitoring of formation process of vortex core-spun yarn containing metal wire[J]. Journal of Textile Research, 2019,40(5):136-143. | |
[12] | 姚江薇, 邹专勇, 闫琳琳, 等. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018,39(10):32-37. |
YAO Jiangwei, ZOU Zhuanyong, YAN Linlin, et al. Predicition model on tensile strength of air jet vortex spinning yarn and its verification.[J]. Journal of Textile Research, 2018,39(10):32-37. | |
[13] | 李志红, 丁志荣, 王善元. 涡流喷气纱成纱结构与捻度测试方法探讨[J]. 上海纺织科技, 2005,33(11):24-30. |
LI Zhihong, DING Zhirong, WANG Shanyuan. A probe of yarn forming structure and twist measurement method of votex spun[J]. Shanghai Textile Science & Technology, 2005,33(11):24-30. | |
[14] | 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社, 2002: 320-333. |
YU Weidong, CHU Caiyuan. Textile physics [M]. Shanghai: Donghua University Press, 2002: 320-333. | |
[15] | XIE Y, OXENHAM W, GROSBERG P. A study of the strength of wrapped yarns: Part III: the relationship between structural parameters and strength[J]. Journal of The Textile Institute, 1986,77(5):314-326. |
[16] | 裴泽光, 俞兆昇, 郁崇文. 影响纯涤纶喷气涡流纱强度的因素[J]. 纺织学报, 2008,29(12):22-24. |
PEI Zeguang, YU Zhaosheng, YU Chongwen. Effect of parameters on tenacity of polyester MVS yarn[J]. Journal of Textile Research, 2008,29(12):22-24. | |
[17] | 胡革明, 江玲, 陈美玉, 等. 喷气涡流纺织物与传统环锭纺织物性能对比[J]. 棉纺织技术, 2017,45(1):26-30. |
HU Geming, JIANG Ling, CHEN Meiyu, et al. Property comparison between air-jet vortex fabric and ring fabric[J]. Cotton Textile Technology, 2017,45(1):26-30. | |
[18] | 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺纱线细节产生机制分析[J]. 纺织学报, 2008,29(7):21-26. |
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Analysis of the cause leading to generation of thin places on the air jet vortex spun yarn[J]. Journal of Textile Research, 2008,29(7):21-26. | |
[19] | OXENHAM William. Current and future trends in yarn production[J]. Journal of Textile and Apparel, Technology and Management, 2002,2(2):1-10. |
[20] | ZOU Zhuanyong, YU Jianyong, CHENG Longdi, et al. A study of generating yarn thin places of murata vortex spinning[J]. Textile Research Journal, 2009,79(2):129-137. |
[1] | 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180. |
[2] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[3] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[4] | 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41. |
[5] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[6] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[7] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
[8] | 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14. |
[9] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[10] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[11] | 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7. |
[12] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
[13] | 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78. |
[14] | 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8. |
[15] | 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12. |
|