纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 59-66.doi: 10.13475/j.fzxb.20200504408

• 纺织工程 • 上一篇    下一篇

涡流纺纱线的包缠加捻对其力学性能的影响

陈美玉1,2(), 刘玉琳3, 胡革明3, 孙润军1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.陕西华燕航空仪表有限公司, 陕西 汉中 723102
  • 收稿日期:2020-05-20 修回日期:2020-10-16 出版日期:2021-01-15 发布日期:2021-01-21
  • 作者简介:陈美玉(1966—),女,高级工程师,硕士。主要研究方向为功能性材料的研究与开发。E-mail: yuanshijidi@163.com

Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns

CHEN Meiyu1,2(), LIU Yulin3, HU Geming3, SUN Runjun1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product in Ministry of Education, Xi'an Polytechnic University,Xi'an, Shaanxi 710048, China
    3. Shaanxi Huayan Aero-Instrument Co., Ltd., Hanzhong, Shaanxi 723102, China
  • Received:2020-05-20 Revised:2020-10-16 Online:2021-01-15 Published:2021-01-21

摘要:

为探究涡流纺纱线的包缠加捻与成纱力学性能的关系,从理论上分析了涡流纺纱线拉伸过程中的纤维形变与受力,详细研究了涡流压力和纺纱速度对涡流纺纱线力学性能的影响。结果表明:外层纤维螺旋包缠特性对涡流纺成纱的力学性能起着决定性作用,涡流压力和纺纱速度为影响涡流纺包缠和加捻效果的主要因素;当纺纱速度为280 m/min时,随着涡流压力的增加,涡流纺纱线的断裂比强度和弹性模量呈先增加后下降的变化趋势,而断裂伸长率基本不变,且当涡流压力为0.55 MPa时,涡流纺成纱力学性能最优;当涡流压力恒定为0.45 MPa时,随着涡流纺纱速度的增加,涡流纺纱线的断裂比强度、断裂伸长率均呈略微下降趋势,弹性模量呈现先下降后基本不变的趋势。

关键词: 涡流纺纱线, 包缠加捻, 涡流压力, 纺纱速度, 力学性能

Abstract:

In order to investigate the effect of winding and twisting on the mechanical properties of the air-jet vortex spun yarns, the deformation and force loading of the fibers in air-jet vortex spun yarn during stretching process was analyzed theoretically in this paper, and the effect of the vortex pressure and the spinning speed on the mechanical properties of the vortex spun yarn was investigated in detail. The results indicate that the spiral wrapping of the outer fibers play a decisive role in the mechanical properties of the yarn. The vortex pressure and the spinning speed are the two main factors affecting wrapping and twisting effect of the vortex spinning. When the spinning speed was fixed as 280 m/min, the breaking tenacity and the initial modulus of the yarn demonstrate an increase followed by a decrease, with the breaking elongation virtually unchanged, with the increase of the vortex pressure. When the spinning speed was fixed as 280 m/min with the vortex pressure being 0.55 MPa, the optimum mechanical properties of the yarn were obtained. When the vortex pressure was fixed as 0.45 MPa, with the increase of the spinning speed, the breaking tenacity and the breaking elongation of the yarn both show a slight decreasing trend, and the initial modulus shows a decrease and then stabilized.

Key words: vortex spun yarn, wrapping and twisting, vortex pressure, spinning speed, mechanical properties

中图分类号: 

  • TS101.2

图1

涡流纺纱线整体纵向特征"

图2

涡流纺纱线局部纵向特征扫描电镜照片(×50)"

图3

涡流纺纱线受轴向拉伸模型示意图"

图4

涡流纺纱线拉伸时外层纤维受力分析图"

表1

HYF型喷气涡流纺纱机的设备参数"

前罗拉
与中罗拉
距离/mm
中罗拉
与第3罗拉
距离/mm
第3与
第4罗拉
距离/mm
前罗拉
与空芯锭
距离/mm
空芯锭
腔的
直径/mm
横动
角度/
(°)
44.5 1.1 16 44.5 1.1 16

表2

涡流纺纱线样品纺纱工艺参数"

样品
编号
涡流压力/
MPa
纺纱速度/
(m·min-1)
喂入比 张力比 总牵伸
倍率
主牵伸
倍率
1# 0.45 280 0.97 1.025 162 27
2# 0.50 280 0.97 1.025 162 27
3# 0.55 280 0.97 1.025 162 27
4# 0.60 280 0.97 1.025 162 27
5# 0.65 280 0.97 1.025 162 27
6# 0.45 320 0.97 1.025 162 27
7# 0.45 360 0.97 1.025 162 27
8# 0.45 400 0.97 1.025 162 27

图5

不同涡流压力成纱的扫描电镜照片(×50)"

图6

涡流压力与成纱包缠加捻指标之间的关系"

图7

不同纺纱速度成纱的扫描电镜照片(×50)"

图7

不同纺纱速度成纱的扫描电镜照片(×50)"

表3

不同纺纱速度对涡流纺成纱包缠加捻指标的影响"

纺纱速度/
(m·min-1)
螺旋包缠角 螺距
平均值/
(°)
CV值/
%
平均值/
μm
CV值/
%
280 30.2 7.7 644.0 7.2
320 30.1 7.1 756.7 10.4
360 28.6 8.1 881.3 10.0
400 26.1 13.2 962.0 8.3

表3

不同纺纱速度对涡流纺成纱包缠加捻指标的影响"

纺纱速度/
(m·min-1)
螺旋包缠角 螺距
平均值/
(°)
CV值/
%
平均值/
μm
CV值/
%
280 30.2 7.7 644.0 7.2
320 30.1 7.1 756.7 10.4
360 28.6 8.1 881.3 10.0
400 26.1 13.2 962.0 8.3

图8

不同涡流压力对涡流纺纱线的力学性能的影响"

图8

不同涡流压力对涡流纺纱线的力学性能的影响"

表4

不同纺纱速度对涡流纺纱线力学性能的影响"

纺纱速度/(m·min-1) 断裂比强度 断裂伸长率 弹性模量
平均值/(cN·tex-1) CV值/% 平均值/% CV值/% 平均值/(cN·tex-1) CV值/%
280 23.28 10.32 10.17 7.80 32.60 8.95
320 23.18 9.30 9.85 7.29 30.06 8.59
360 22.98 6.54 9.83 5.18 31.08 6.77
400 22.52 12.77 9.23 13.67 31.36 11.22

表4

不同纺纱速度对涡流纺纱线力学性能的影响"

纺纱速度/(m·min-1) 断裂比强度 断裂伸长率 弹性模量
平均值/(cN·tex-1) CV值/% 平均值/% CV值/% 平均值/(cN·tex-1) CV值/%
280 23.28 10.32 10.17 7.80 32.60 8.95
320 23.18 9.30 9.85 7.29 30.06 8.59
360 22.98 6.54 9.83 5.18 31.08 6.77
400 22.52 12.77 9.23 13.67 31.36 11.22
[1] NAZAN Erdumlua, BULENT Ozipeka, WILLIAM Oxenham. Vortex spinning technology[J]. Textile Progress, 2012,44(3/4):141-174.
doi: 10.1080/00405167.2012.739345
[2] 邹专勇, 梁方阁, 程隆棣, 等. 喷气涡流纺纱线成形机理与结构[J]. 上海纺织科技, 2007,35(7):5-6,8.
ZOU Zhuanyong, LIANG Fangge, CHENG Longdi, et al. The yarn formation principle of jet vortex spinning and its structure[J]. Shanghai Textile Science & Technology, 2007,35(7):5-6,8.
[3] 陈梁. 喷气涡流纺纱工艺及喷嘴装置研究[D]. 上海:东华大学, 2014: 14.
CHEN Liang. Study on spinning process and jet vortex spinning nozzle device design[D]. Shanghai: Donghua University, 2014: 14.
[4] 于津霞. 喷气涡流纺(MVS)成纱结构及其织物性能的研究[D]. 青岛:青岛大学, 2007: 11-17.
YU Jinxia. Investigation on yarn structure and fabric properties of air-jet vortex spinning[D]. Qingdao: Qingdao University, 2007: 11-17.
[5] ZOU Zhuanyong, CHENG Longdi, XUE Wenliang, et al. A study of the twisted strength of the whirled airflow in murata vortex spinning[J]. Textile Research Journal, 2008,78(8):682-687.
doi: 10.1177/0040517508089753
[6] ZENG Yongchun, WAN Yuqin, YU Chongwen, et al. Controlling the air vortex twist in air-jet spinning[J]. Textile Research Journal, 2005,75(2):175-177.
doi: 10.1177/004051750507500216
[7] BASALl Guldemet, OXENHAM William. Effects of some process parameters on the structure and properties of vortex spun yarn[J]. Textile Research Journal, 2006,76(6):492-499.
doi: 10.1177/0040517506064253
[8] HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031.
doi: 10.1177/0040517515619354
[9] ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Analysis of the fiber spatial trajectory in vortex spun yarn[J]. Textile Research Journal, 2009,79(10):924-929.
doi: 10.1177/0040517508095609
[10] HAN Chenchen, XUE Wenliang, CHENG Longdi, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031.
[11] 何建, 裴泽光, 周键, 等. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019,40(5):136-143.
HE Jian, PEI Zeguang, ZHOU Jian, et al. Online monitoring of formation process of vortex core-spun yarn containing metal wire[J]. Journal of Textile Research, 2019,40(5):136-143.
[12] 姚江薇, 邹专勇, 闫琳琳, 等. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018,39(10):32-37.
YAO Jiangwei, ZOU Zhuanyong, YAN Linlin, et al. Predicition model on tensile strength of air jet vortex spinning yarn and its verification.[J]. Journal of Textile Research, 2018,39(10):32-37.
[13] 李志红, 丁志荣, 王善元. 涡流喷气纱成纱结构与捻度测试方法探讨[J]. 上海纺织科技, 2005,33(11):24-30.
LI Zhihong, DING Zhirong, WANG Shanyuan. A probe of yarn forming structure and twist measurement method of votex spun[J]. Shanghai Textile Science & Technology, 2005,33(11):24-30.
[14] 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社, 2002: 320-333.
YU Weidong, CHU Caiyuan. Textile physics [M]. Shanghai: Donghua University Press, 2002: 320-333.
[15] XIE Y, OXENHAM W, GROSBERG P. A study of the strength of wrapped yarns: Part III: the relationship between structural parameters and strength[J]. Journal of The Textile Institute, 1986,77(5):314-326.
[16] 裴泽光, 俞兆昇, 郁崇文. 影响纯涤纶喷气涡流纱强度的因素[J]. 纺织学报, 2008,29(12):22-24.
PEI Zeguang, YU Zhaosheng, YU Chongwen. Effect of parameters on tenacity of polyester MVS yarn[J]. Journal of Textile Research, 2008,29(12):22-24.
[17] 胡革明, 江玲, 陈美玉, 等. 喷气涡流纺织物与传统环锭纺织物性能对比[J]. 棉纺织技术, 2017,45(1):26-30.
HU Geming, JIANG Ling, CHEN Meiyu, et al. Property comparison between air-jet vortex fabric and ring fabric[J]. Cotton Textile Technology, 2017,45(1):26-30.
[18] 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺纱线细节产生机制分析[J]. 纺织学报, 2008,29(7):21-26.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Analysis of the cause leading to generation of thin places on the air jet vortex spun yarn[J]. Journal of Textile Research, 2008,29(7):21-26.
[19] OXENHAM William. Current and future trends in yarn production[J]. Journal of Textile and Apparel, Technology and Management, 2002,2(2):1-10.
[20] ZOU Zhuanyong, YU Jianyong, CHENG Longdi, et al. A study of generating yarn thin places of murata vortex spinning[J]. Textile Research Journal, 2009,79(2):129-137.
[1] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[2] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[3] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[4] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[5] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[6] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[7] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[8] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[9] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[10] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[11] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[12] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[13] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[14] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[15] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!