纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 73-77.doi: 10.13475/j.fzxb.20191105906

• 纺织工程 • 上一篇    下一篇

玻璃纤维/光敏树脂复合材料的3D打印及其力学性能

宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟()   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2019-11-25 修回日期:2020-08-30 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 田伟
  • 作者简介:宋星(1992—),男,硕士生。主要研究方向为基于3D打印技术的纤维增强复合材料制备与性能。

3D printing and mechanical properties of glass fiber/photosensitive resin composites

SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei()   

  1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
  • Received:2019-11-25 Revised:2020-08-30 Online:2021-01-15 Published:2021-01-21
  • Contact: TIAN Wei

摘要:

为解决光固化3D打印树脂材料强度低的问题,将玻璃纤维与光敏树脂复合,采用光固化3D打印技术制备玻璃纤维增强复合材料,分析了玻璃纤维经硅烷偶联剂改性处理以及玻璃纤维的铺层方式对复合材料力学性能的影响。结果表明:玻璃纤维可提升复合材料的拉伸强度和弯曲强度,相比于未处理的玻璃纤维,经硅烷偶联剂处理的玻璃纤维对复合材料力学性能的提升更为显著,复合材料的拉伸强度提高了50%,弯曲强度提高了143%;相较于连续长纤维的铺层方式,采用模拟三维正交的铺层方式对于复合材料力学性能影响更为显著,拉伸强度提升了110%,而弯曲强度增加了147%。

关键词: 玻璃纤维, 光敏树脂, 硅烷偶联剂, 铺层方式, 力学性能, 3D打印, 复合材料

Abstract:

Aiming at the low strength of light-cured 3D printing resin materials, a method of using glass fiber to reinforce photosensitive resin composites was proposed. The glass fiber and the photosensitive resin were compounded and rapidly fabricated by using the light-cured 3D printing technology. The effects of glass fiber modification and the laying method of glass fiber on the mechanical properties of the composites were studied. The results of the mechanical experiments were analyzed, demonstrating that the glass fiber could enhance the tensile strength and flexural strength of the sample. The glass fiber treated by the silane coupling agent is more significant than the untreated glass fiber for the mechanical properties, and the tensile strength of the sample is increased by 50%, and the bending strength 143%. The effect of the laying method simulating three-dimensional orthogonal structure on mechanical properties of the composites is more significant than the continuous long fiber laying method, and the tensile strength is increased by 110% and the flexural strength 147%.

Key words: glass fiber, photosensitive resin, silane coupling agent, laying method, mechanical property, 3D printing, composite material

中图分类号: 

  • TS195.5

图1

纤维增强光敏树脂复合材料3D打印工艺原理图"

图2

正交结构图"

图3

正交交织玻璃纤维增强复合材料实物图"

图4

玻璃纤维增强复合材料截面的微观结构"

图5

各类试样拉伸应力-应变曲线图"

图6

KH-550改性原理图"

表1

不同试样的力学性能"

材料 拉伸强度 弯曲强度
测量值/
MPa
增加百
分率/%
测量值/
MPa
增加百
分率/%
纯树脂 6.83 75.39
玻璃纤维增强复合材料 8.06 18 132 42
改性玻璃纤维增强复合材料 10.26 50 183 143
正交玻璃纤维增强复合材料 14.37 110 186 147

图7

各类试样弯曲应力-应变曲线"

[1] 宋星, 祝成炎, 田伟, 等. 芳纶增强复合材料波纹夹层3D打印与力学性能研究[J].合成纤维, 2019(2):29-32.
SONG Xing, ZHU Chengyan, TIAN Wei, et al. Study on 3D printing and mechanical properties of aramid reinforced composites corrugated sandwich structure[J].Synthetic Fiber in China, 2019(2):29-32.
[2] 刘飞, 王炜, 李金岳, 等. 3D打印技术在空间飞行器研制中的应用研究[J].航天制造技术, 2018(6):58-62.
LIU Fei, WANG Wei, LI Jinyue, et al. Application research of 3D printing in spacecraft development[J].Aeronautical Manufacturing Technology, 2018(6):58-62.
[3] ATTARAN M. The rise of 3D printing: the advantages of additive manufacturing over traditional manufactu-ring[J]. Business Horizons, 2017,60(5):677-688.
[4] 陈继民, 张成宇, 曾勇, 等. 骨科数字化3D打印技术及应用[J]. 激光与光电子学进展, 2018,55(1):126-134.
CHEN Jimin, ZHANG Chengyu, ZENG Yong, et al. 3D printing technology in orthopedics and its application[J]. Laser & Optoelectronics Progress, 2018,55(1):126-134.
[5] 邓兴泓. 多材料光固化3D打印装置及工艺研究[D]. 哈尔滨:哈尔滨工业大学, 2018: 1-2.
DENG Xinghong. Research on device and process of multi-materials seterolithography[D]. Harbin:Harbin Institute of Technology, 2018: 1-2.
[6] 钟亚洲. 3D打印材料光敏树脂的合成及其改性研究[D]. 广州:广东工业大学, 2018: 3.
ZHONG Yazhou. Study on synthesis and modification of photosensitive resin for 3D printing materials[D]. Guangzhou:Guangdong University of Technology, 2018: 3.
[7] 王蕾. 3D打印材料光敏树脂的改性研究[D]. 武汉:武汉纺织大学, 2015: 9-10.
WANG Lei. Research on modification of photosensitiveresin for 3D printing materials[D]. Wuhan: Wuhan Textile University, 2015: 9-10.
[8] 韩文娟, 黄笔武, 雍涛, 等. 聚氨酯丙烯酸酯作为预聚体的光敏树脂的制备及性能[J]. 南昌大学学报(理科版), 2015,39(4):363-367.
HAN Wenjuan, HUANG Biwu, YONG Tao, et al. Preparation of the photosensitive resin with urethane acrylate as prepolymer and its properties[J]. Journal of Nanchang University(Natural Science Edition), 2015,39(4):363-367.
[9] 权利军. 纤维增强3D打印复合材料的制备及力学性能[D]. 杭州:浙江理工大学, 2016: 7-18.
QUAN Lijun. Preparation and mechanical properties of fiber reinforced 3D printed composites[D].Hangzhou: Zhejiang Sci-Tech University, 2016: 7-18.
[10] 蔡冯杰. 基于3D打印技术的涤纶纤维增强复合材料制备及其力学性能研究[D]. 杭州:浙江理工大学, 2018: 41-43.
CAI Fengjie. Preparation and mechanical properties of polyester fiber reinforced composites based on 3D printing technology[D].Hangzhou: Zhejiang Sci-Tech University, 2018: 41-43.
[11] 孙颖, 刘俊岭, 郑园园, 等. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018,39(2):49-54.
SUN Ying, LIU Junling, ZHENG Yuanyuan, et al. Tensile properties of carbon-aramid hybrid 3D braided composites[J]. Journal of Textile Research, 2018,39(2):49-54.
[12] 孙鹏, 金涛, 田帅, 等. 硅烷偶联剂改性玻璃纤维增强PA6研究[J]. 化工新型材料, 2016,44(1):205-207.
SUN Peng, JIN Tao, TIAN Shuai, et al. Study on reinforcement of PA6 by glass fiber treated with silane coupling agent[J]. New Chemical Materials, 2016,44(1):205-207.
[1] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[2] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[3] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
[4] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[5] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf / SiC 复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[6] 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173.
[7] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[8] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[9] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[10] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[11] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[12] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[13] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[14] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[15] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!