纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 93-100.doi: 10.13475/j.fzxb.20201005008

• 纺织工程 • 上一篇    下一篇

织物与皮肤动态接触下的湿感觉阈限与强度评价

张昭华1,2(), 唐香宁1, 李俊1,2, 李璐瑶1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点试验室, 上海 200051
  • 收稿日期:2020-10-26 修回日期:2020-11-30 出版日期:2021-02-15 发布日期:2021-02-23
  • 作者简介:张昭华(1977—),女,副教授,博士。主要研究方向为服装舒适性与工效性。E-mail: zhangzhaohua@dhu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232021G-08)

Threshold and intensity evaluation of skin wetness perception under dynamic contact with fabrics

ZHANG Zhaohua1,2(), TANG Xiangning1, LI Jun1,2, LI Luyao1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-10-26 Revised:2020-11-30 Online:2021-02-15 Published:2021-02-23

摘要:

为研究织物以不同速度与皮肤动态接触过程中对湿感觉的影响,分析了湿感觉绝对阈限与阈上强度的影响机制。通过向织物内添加定量的水,让受试者应用心理学标尺对湿感觉的阈上强度进行评分;然后通过注射泵向织物持续加水直至受试者感觉到湿,记录此时的加水量为绝对阈限;最后采用温度传感器记录测试皮肤区域的温度变化,计算皮肤冷却率。结果表明:皮肤冷却率与湿感觉阈上强度呈正相关,与绝对阈限呈负相关;湿感觉阈上强度可根据织物的最大瞬态热流量、含水量和摩擦因数进行预测,绝对阈限可根据织物的润湿时间和摩擦因数进行预测;绝对阈限适用于评价皮肤在初始出汗状态下的湿敏感性,在皮肤大量出汗时用阈上强度可更好地评价湿敏感性。

关键词: 织物, 皮肤, 动态接触, 湿感觉, 绝对阈限, 阈上强度

Abstract:

To gain insight into how fabrics affect the perception of wetness under dynamic skin contact at different velocities, the influencing mechanism of absolute threshold and intensity of the perception of wetness were investigated. By applying quantitative amounts of water (low, medium, and high) to each of the testing fabrics, participants reported the intensity of perceived wetness on a psychometric scale. In addition, water was supplied continually with a pump until the threshold of wetness was perceived by the participants. At the same time, the temperature sensors were used to record local skin temperature and calculate skin cooling rate. The results indicate that skin cooling rate has a significant positive correlation with wetness intensity rating, while a negative correlation with absolute threshold. The intensity rating of wetness perception is predicted by the physical parameters of the fabrics, that is maximum transient thermal flow, water content, and friction coefficient, while wetness threshold was predicted by wetting time and coefficient of friction. The threshold detection was qualified to evaluate the sensitivity to wetness at the initial detection of moisture on the skin, while the stimulus intensity rating would give a better prediction at the moisture absorption stage. This study provides the evaluation technology for designing clothing with desirable wetness levels.

Key words: fabric, skin, dynamic contact, wetness perception, absolute threshold, intensity rating

中图分类号: 

  • TS941.16

表1

织物规格参数表"

组别 试样
编号
纤维成分 组织 面密度/
(g·m-2)
厚度/
mm
透气性/
(mm·s-1)
薄型
(0.67~
0.75 mm)
L1 棉 100% 纬平针 152 0.70 552.85
L2 麻 100% 纬平针 143 0.72 3 501.85
L3 涤纶100% 纬平针 154 0.75 1 508.81
L4 Coolmax 100% 珠地 148 0.71 936.65
L5 锦/氨纶
(82/18)
纬平针 164 0.67 1 234.17
厚型
(0.97~
1.03 mm)
H1 棉 100% 纬平针 224 1.03 457.24
H2 棉 100% 毛圈 202 1.01 343.16
H3 涤纶100% 纬平针 223 0.97 1 040.57
H4 涤纶100% 毛圈 221 1.03 1 070.70
参照 R 棉/涤纶
(65/35)
纬平针 181 0.79 1 500.01

图1

皮肤与织物间动态接触测试设备图 1—电动机; 2—速度显示; 3—调速器; 4—电源开关; 5—驱动杆; 6—夹子; 7—织物试样; 8—弹簧; 9—金属底座; 10—注射泵; 11—注射器; 12—硅胶管; 13—温度传感器; 14 —数据记录仪。"

图2

实验场景图"

图3

湿感觉评分标尺"

图4

织物在3种摩擦速度下的湿感觉绝对阈限"

图5

织物在不同含水量下的湿感觉强度"

图6

湿感觉评分与绝对阈限之间的比较"

[1] DRIVER Jon, SPENCE Charles. Multisensory perception: beyond modularity and convergence[J]. Current Biology, 2000,10(20):731-735.
[2] GERRETT Nicola, OUZZAHRA Yacine, COLEBY Samantha, et al. Thermal sensitivity to warmth during rest and exercise: a sex comparison[J]. European Journal of Applied Physiology, 2014,114(7):1451-1462.
doi: 10.1007/s00421-014-2875-0
[3] SWEENEY Maureen M, BRANSON Donna H. Sensorial comfort: part I: a psychophysical method for assessing moisture sensation in clothing[J]. Textile Research Journal, 1990,60(7):371-377.
[4] JEON Eunkyung, YOO Shinjung, KIM Eunae. Psychophysical determination of moisture perception in high-performance shirt fabrics in relationtosweating level[J]. Ergonomics, 2011,54(6):576-586.
[5] TIEST Wouter M Bergmann, KOSTERS N Dolfine, KAPPERS Astrid M L, et al. Haptic perception of wetness[J]. Acta Psychologica, 2012,141(2):159-163.
pmid: 22964056
[6] FILINGERI Davide, REDORTIER Bernard, HODDER Simon, et al. The role of decreasing contact temperatures and skin cooling in the perception of skin wetness[J]. Neuroscience Letters, 2013,551:65-69.
pmid: 23886487
[7] KAPLAN Sibel, OKUR Ayse. Determination of coolness and dampness sensations created by fabrics by forearm test and fabric measurements[J]. Journal of Sensory Studies, 2009,24(4):479-497.
[8] HU Junyan, LI Yi. Psycho-physiological mechanisms of thermal and moisture perceptions to the touch of knitted fabrics[J]. Arbete Och Halsa Vetenskaplig Skriftserie, 2000 (8):102-106.
[9] RACCUGLIA Margherita, HODDER Simon, HAVENITH George. Human wetness perception in relation to textile water absorption parameters under static skin contact[J]. Textile Research Journal, 2017,87(20):2449-2463.
[10] TANG K P M, KAN C W, FAN J T. Psychophysical measurement of wet and clingy sensation of fabrics by the volar forearm test[J]. Journal of Sensory Studies, 2015,30(4):329-347.
[11] CHAU Kam Hong, TANG Ka Po Maggie, KAN Chi Wai. Subjective wet perception assessment of fabrics with different drying time[J]. Royal Society Open Science, 2018,5(8):180798.
pmid: 30225071
[12] ZHANG Zhaohua, TANG Xiangning, LI Jun, et al. The effect of dynamic friction with wet fabrics on skin wetness perception[J]. International Journal of Occupational Safety and Ergonomics, 2020,26(2):370-383.
[13] LI Yi, PLANTE A M, HOLCOMBE B V. The physical mechanisms of the perception of dampness in fabrics[J]. The Annals of Physiological Anthropology, 1992,11(6):631-634.
[14] RACCUGLIA Margherita, PISTAK Kolby, HEYDE Christian, et al. Human wetness perception of fabrics under dynamic skin contact[J]. Textile Research Journal, 2018,88(19):2155-2168.
[15] FILINGERI Davide, ACKERLEY Rochelle. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics[J]. Journal of Neurophysiology, 2017,117(4):1761-1775.
doi: 10.1152/jn.00883.2016 pmid: 28123008
[1] 丁子寒 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的研制及性能[J]. , 2021, 42(03): 0-0.
[2] 刘立东 李新荣 刘汉邦 李丹丹. 基于织物特性的静电吸附力模型的建立[J]. , 2021, 42(03): 0-0.
[3] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
[4] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[5] 肖彩勤, 孙丰鑫, 高卫东. 基于屈诱多形态力学测试的织物外观平整度表征[J]. 纺织学报, 2021, 42(02): 80-86.
[6] 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79.
[7] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[8] 刘立东, 李新荣, 刘汉邦, 李丹丹. 服装面料静电吸附抓取转移电极板优化设计[J]. 纺织学报, 2021, 42(02): 185-192.
[9] 刘海桑, 蒋高明, 董智佳. 基于Web的少梳经编色织物仿真与虚拟展示[J]. 纺织学报, 2021, 42(02): 87-92.
[10] 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179.
[11] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[12] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[13] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[14] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[15] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!