纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 44-49.doi: 10.13475/j.fzxb.20200305207

所属专题: 纳米纤维制备及应用

• 纤维材料 • 上一篇    下一篇

碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能

张亦可, 贾凡, 桂澄, 晋蕊, 李戎()   

  1. 东华大学 化学化工与生物工程学院, 上海 201620
  • 收稿日期:2020-03-23 修回日期:2020-11-13 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 李戎
  • 作者简介:张亦可(1996—),女,硕士生。主要研究方向为功能材料制备及表征。

Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane

ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong()   

  1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
  • Received:2020-03-23 Revised:2020-11-13 Online:2021-03-15 Published:2021-03-17
  • Contact: LI Rong

摘要:

为提高聚偏氟乙烯(PVDF)的压电性能,采用静电纺丝法将碳纳米管(CNTs)引入到PVDF纳米纤维膜中制备CNTs/PVDF纳米纤维膜,并组装成三明治结构的柔性压电传感器,探究CNTs质量分数对CNTs/PVDF纳米纤维膜压电性能的影响。借助扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、万能试验机以及数字示波器对纳米纤维的形貌、结构、力学性能及压电性能进行表征。结果表明:CNTs/PVDF纳米纤维膜具有良好的力学特性,CNTs的添加有利于晶体结构中β晶型的形成;当CNTs质量分数为5%时,CNTs/PVDF纳米纤维的晶体结构中β晶型含量最多,压电性能最强,此时柔性传感器的输出电压达到最大值7.5 V。

关键词: 聚偏氟乙烯, 碳纳米管, 柔性传感器, 压电传感器, 压电性能, 静电纺丝, 纳米纤维膜

Abstract:

In order to improve the piezoelectric properties of polyvinylidene fluoride (PVDF) nanofiber membrane, carbon nanotubes (CNTs) were introduced in PVDF nanofiber membrane to fabricate CNTs/PVDF nanofiber membrane by electrospinning, and a simple flexible piezoelectric sensor with a sandwich structure was assembled. The effect of the mass fraction of CNTs on the piezoelectric properties of CNTs/PVDF nanofiber membrane was investigated. The morphology, structure, mechanical properties and piezoelectric properties of the nanofibers were characterized by scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, universal testing machine and digital oscilloscope. The results show that CNTs/PVDF nanofiber membrane has good mechanical properties, and the addition of CNTs into the fiber supports the formation of β crystal type in the crystal structure. When the mass fraction of CNTs is 5%, the content of β crystal type is the highest in the crystal structure of CNTs/PVDF nanofiber, and the piezoelectric performance is the strongest. Under such conditions, the output voltage of the flexible sensor reached the maximum value of 7.5 V.

Key words: polyvinylidene fluoride, carbon nanotubes, flexible sensor, piezoelectric sensor, piezoelectric property, electrospinning, nanofiber membrane

中图分类号: 

  • TP212.9

图1

CNTs/PVDF三明治型压电传感器的结构示意图"

图2

不同CNTs质量分数的CNTs/PVDF纳米纤维膜的扫描电镜照片(×5 000)"

图3

不同CNTs质量分数的CNTs/PVDF纳米纤维的直径分布"

图4

不同CNTs质量分数的CNTs/PVDF纳米纤维膜的红外光谱"

图5

不同CNTs质量分数的CNTs/PVDF纳米纤维膜的X射线衍射谱图"

表1

不同CNTs质量分数的CNTs/PVDF纳米纤维膜β晶型的相对含量"

CNTs质量分数/% β晶型的相对含量/%
0 52.69
1 58.32
3 68.57
5 80.25
8 74.52
10 60.09

表2

不同CNTs质量分数的CNTs/PVDF纳米纤维膜的力学性能"

CNTs质量分数/% 断裂应力/MPa 断裂伸长率/%
0 0.929 112.796
1 0.812 113.519
3 1.574 158.686
5 1.185 106.337
8 1.133 95.988
10 1.071 75.695

图6

CNTs/PVDF压电传感器的压电响应曲线"

[1] 王杰, 周茗玮, 汪滨, 等. 纳米纤维膜基柔性压力传感器的优化设计制备[J]. 纺织学报, 2019,40(11):32-37.
WANG Jie, ZHOU Mingwei, WANG Bin, et al. Optimization design and preparation of nanofiber membrane based flexible pressure sensor[J]. Journal of Textile Research, 2019,40(11):32-37.
[2] TANNARANA M, SOLANKI G K, BHAKHAR S A, et al. 2D-SnSe2 nanosheet functionalized piezo-resistive flexible sensor for pressure and human breath monitoring[J]. ACS Sustainable Chemistry & Engineering, 2020,8(20):7741-7749.
[3] HWANG G T, BYUN M, JEONG C K, et al. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications[J]. Advanced Healthcare Materials, 2015,4(5):646-658.
pmid: 25476410
[4] ZHANG L, GUO S. Progress in the ferroelectric poly(vinylidene fluoride) and its copolymers[J]. Progress in Physics, 2016,36(2):35-45.
[5] LI B, ZHANG F, GUAN S, et al. Wearable piezoelectric device assembled by one-step continuous electrospinning[J]. Journal of Materials Chemistry C, 2016,4(29):6988-6995.
[6] DONG C, FU Y, ZANG W, et al. Self-powering/self-cleaning electronic-skin basing on PVDF/TiO2 nanofibers for actively detecting body motion and degrading organic pollutants[J]. Applied Surface Science, 2017,416:424-431.
[7] YANILMAZ M, CHEN C, ZHANG X. Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries[J]. Journal of Polymer Science Part B-Polymer Physics, 2013,51(23):1719-1726.
[8] HE W, YONG T, TEO W E, et al. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering[J]. Tissue Engineering, 2005,11(9/10):1574-1588.
[9] ZHOU Y, HE J, WANG H, et al. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor[J]. Scientific Reports, 2017,7(1):12949.
doi: 10.1038/s41598-017-13281-8 pmid: 29021591
[10] CAO R, WANG J, ZHAO S, et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring[J]. Nano Research, 2018,11(7):3771-3779.
doi: 10.1007/s12274-017-1951-2
[11] WANG Y R, ZHENG J M, REN G Y, et al. A flexible piezoelectric force sensor based on PVDF fabrics[J]. Smart Materials and Structures, 2011,20(4):045009.
doi: 10.1088/0964-1726/20/4/045009
[12] PARK D Y, JOE D J, KIM D H, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Materials, 2017,29(37):1702308.
[13] KHAN H, RAZMJOU A, WARKIANI M E, et al. Sensitive and flexible polymeric strain sensor for accurate human motion monitoring[J]. Sensors, 2018,18(2):418.
[14] MI H Y, JING X, ZHENG Q, et al. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing[J]. Nano Energy, 2018,48:327-336.
[15] ABOLHASANI M M, SHIRVANIMOGHADDAM K, NAEBE M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators[J]. Composites Science and Technology, 2017,138:49-56.
[16] MEYERS F N, LOH K J, DODDS J S, et al. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites[J]. Nanotechnology, 2013,24(18):185501.
doi: 10.1088/0957-4484/24/18/185501 pmid: 23579369
[17] NIU Y, YU K, BAI Y, et al. Enhanced dielectric performance of BaTiO3/PVDF composites prepared by modified process for energy storage applications[J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2015,62(1):108-115.
[18] HOSSEINI S M, YOUSEFI A A. Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites[J]. Organic Electronics, 2017,50:121-129.
doi: 10.1016/j.orgel.2017.07.035
[19] ZENG Z, GAI L, PETITPAS A, et al. A flexible, sandwich structure piezoelectric energy harvester using PIN-PMN-PT/epoxy 2-2 composite flake for wearable application[J]. Sensors and Actuators A: Physical, 2017,265:62-69.
doi: 10.1016/j.sna.2017.07.059
[20] DHAND V, HONG S K, LI L, et al. Fabrication of robust, ultrathin and light weight, hydrophilic, PVDF-CNT membrane composite for salt rejection[J]. Composites Part B: Engineering, 2019,160:632-643.
doi: 10.1016/j.compositesb.2018.12.106
[21] MAVUKKANDY M O, ZAIB Q, ARAFAT H A. CNT/PVP blend PVDF membranes for the removal of organic pollutants from simulated treated wastewater effluent[J]. Journal of Environmental Chemical Engineering, 2018,6(5):6733-6740.
doi: 10.1016/j.jece.2018.10.029
[22] ZHANG Z, CHEN Y, GUO J. ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019,105:212-218.
doi: 10.1016/j.physe.2018.09.007
[23] WU C M, CHOU M H. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes[J]. Composites Science and Technology, 2016,127:127-133.
doi: 10.1016/j.compscitech.2016.03.001
[1] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[2] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[3] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[4] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[5] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[6] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[7] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[8] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[9] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[10] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[11] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[12] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[13] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[14] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[15] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!