纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 50-55.doi: 10.13475/j.fzxb.20200607606

• 纤维材料 • 上一篇    下一篇

中空多孔异形聚丙烯腈纤维的制备及其性能

王慧云, 王萍, 李媛媛, 张岩()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215000
  • 收稿日期:2020-06-30 修回日期:2020-12-02 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 张岩
  • 作者简介:王慧云(1994—),女,硕士。主要研究方向为纳米纤维制备及性能。

Preparation of polyacrylonitrile hollow porous shaped fibers and its performance

WANG Huiyun, WANG Ping, LI Yuanyuan, ZHANG Yan()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215000, China
  • Received:2020-06-30 Revised:2020-12-02 Online:2021-03-15 Published:2021-03-17
  • Contact: ZHANG Yan

摘要:

为获得具有优异保暖性能的中空多孔纤维,利用同轴湿法纺丝制备兼具中空和介孔结构的异形聚丙烯腈纤维,首先将聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)分别与N,N-二甲基甲酰胺共混得到皮层和芯层溶液,然后经同轴异形喷丝针头进入凝固浴得到初生纤维,最后水洗干燥制得高度多孔性的PAN异形纤维。通过设计正交试验优化反应条件,并对纤维的结构和性能进行表征。结果表明:采用湿法纺丝制备的PAN纤维截面呈异形,鞘层呈现出三级结构多尺度孔径,包括微米孔(200 μm)、亚微米孔(200 nm)和纳米孔(20 nm),皮层溶液浓度是影响纤维比表面积的主要因素;制备的PAN纤维的断裂强力可达390.88 cN,隔热保暖性能优于羊毛。

关键词: 湿法纺丝, 异形纤维, 中空多孔纤维, 聚丙烯腈纤维, 保暖性能

Abstract:

In order to obtain hollow porous fibers with thermal insulation performance, the coaxial wet spinning method was used to prepare irregular polyacrylonitrile fibers with both hollow and mesoporous structures. Polyacrylonitrile (PAN) and N,N-dimethylformamide (DMF) were blended to get cortical solution, and polyvinylpyrrolidone (PVP) and DMF were blended to get core solution. Subsequently, the solution was introduced to the coagulation bath through the coaxial shaped spinneret to obtain the primary fibers, and then the PAN-based shaped fibers with high porosity were obtained after washing and drying. Orthogonal experiments were adopted to optimize reaction conditions, and the structures and performance of the fiber were characterized. The results show that the fiber cross-section is of shaped profiles, and the sheath has a three-level structure with multi-scale pore diameters, including micropores (200 μm), submicron pores (200 nm) and nanopores (20 nm). The concentration of cortical solution is the main factor affecting the specific surface area of fiber. The breaking strength of the fiber can reach 390.88 cN. The thermal insulation performance of fiber is better than that of wool.

Key words: wet spinning, shaped fiber, hollow porous fiber, polyacrylonitrile fiber, thermal performance

中图分类号: 

  • TS104.72

表1

正交试验设计方案"

试验编号 A
PAN质量
分数/%
B
PVP质量
分数/%
C
皮芯层溶液
流速比
D
凝固浴DMF
质量分数/%
1 10 10 1∶10 5
2 10 15 1∶20 10
3 10 20 1∶80 20
4 15 10 1∶20 20
5 15 15 1∶80 5
6 15 20 1∶10 10
7 17 10 1∶80 10
8 17 15 1∶10 20
9 17 20 1∶20 5

图1

中空多孔异形聚丙烯腈纤维的扫描电镜照片"

表2

中空多孔异形聚丙烯腈纤维的形态结构参数"

样品编号 中空度/% 异形度/%
1 7.98 39.08
2 2.49 43.75
3 7.74 36.00
4 2.25 49.78
5 3.41 58.91
6 7.07 22.68
7 27.66 30.56
8 39.04 24.00
9 36.00 23.44

图2

中空多孔异形聚丙烯腈纤维的N2吸附-脱附等温曲线"

表3

中空多孔异形聚丙烯腈纤维的孔结构参数"

样品编号 比表面积/
(m2·g-1)
孔体积/
(cm3·g-1)
孔直径/nm
1 24.58 0.081 16.37
2 8.50 0.052 68.20
3 10.86 0.046 31.01
4 17.75 0.073 18.39
5 10.45 0.074 41.51
6 9.90 0.067 33.73
7 4.43 0.004 5.11
8 7.48 0.008 4.82
9 5.82 0.028 58.99

图3

中空多孔异形聚丙烯腈纤维的XRD曲线"

表4

纤维断裂强力极差分析结果"

试验编号 因素 断裂强力/cN
A B C D
1 1 1 1 1 107.22
2 1 2 2 2 131.71
3 1 3 3 3 135.85
4 2 1 2 3 300.72
5 2 2 3 1 332.27
6 2 3 1 2 305.32
7 3 1 3 2 380.26
8 3 2 1 3 382.81
9 3 3 2 1 317.14
K1 374.78 788.20 795.35 756.63
K2 938.29 846.79 749.57 817.29
K3 1 080.21 758.31 848.38 818.93
k1 124.93 262.73 265.12 252.21
k2 312.76 282.26 249.86 272.43
k3 360.07 252.77 282.79 272.98
极差 235.14 29.49 32.94 20.77
主次因素 A>C>B>D
最优水平 A3 B2 C3 D3
最优组合 A3 B2 C3 D3

图4

中空多孔异形聚丙烯腈纤维的热成像图"

[1] ZHANG Bing, LU Chunxiang, LIU Yaodong, et al. Wet spun polyacrylonitrile-based hollow-mesoporous carbon fiber: stabilization, carbonization and its basic properties[J]. Polymer Degradation and Stability, 2019,170:109021.
[2] LI Ying, LU Chunxiang, ZHANG Shouchun, et al. Nitrogen- and oxygen-enriched 3D hierarchical porous carbon fibers: synjournal and superior supercapacity[J]. Journal of Materials Chemistry A, 2015,3(28):14817-14825.
[3] JANG Joonyoung, KIM Heeeun, KANG Suhee, et al. Urea-assisted template-less synjournal of heavily nitrogen-doped hollow carbon fibers for the anode material of lithium-ion batteries[J]. New Journal of Chemistry, 2019,43(9):3821-3828.
[4] LI Weiqiang, GE Xiao, ZHANG Hao, et al. Hollow mesoporous SiO2 sphere nanoarchitectures with encapsulated silver nanoparticles for catalytic reduction of 4-nitrophenol[J]. Inorganic Chemistry Frontiers, 2016,3(5):663-670.
[5] PENG Na, WIDJOJO Natalia, SUKITPANEENIT Panu, et al. Evolution of polymeric hollow fibers as sustainable technologies: past, present, and future[J]. Progress in Polymer Science, 2012,37(10):1401-1424.
[6] DUAN Nannan, GENG Xue, YE Lin, et al. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation[J]. Biomedical Materials, 2016,11(3):035007.
pmid: 27206161
[7] ZHANG Bing, LU Chunxiang, LIU Yaodong, et al. Wet spun polyacrylonitrile-based hollow-mesoporous fibers with different draw ratios[J]. Polymer, 2019,179:121618.
[8] JIA Zhen, LU Chunxiang, LIU Yaodong, et al. Lignin/polyacrylonitrile composite hollow fibers prepared by wet-spinning method[J]. ACS Sustainable Chemistry & Engineering, 2016,4(5):2838-2842.
[9] MENG Si, ZHANG Junyan, CHEN Wenping, et al. Construction of continuous hollow silica aerogel fibers with hierarchical pores and excellent adsorption performance[J]. Microporous and Mesoporous Materials, 2019,273:294-296.
doi: 10.1016/j.micromeso.2018.07.021
[10] ÁNGEL E, MERCADO P, ALEXANDERM S, et al. Synjournal and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts[J]. Materials Science and Engineering C, 2016,64:61-73.
pmid: 27127029
[11] 张竞, 何伟, 马腾, 等. 静电纺丝PAN纳米纤维的制备与表征[J]. 江苏科技大学学报(自然科学版), 2012,25(4):342-345.
ZHANG Jing, HE Wei, MA Teng, et al. Preparation and characterization of PAN nanofiber via electrostatic spinning[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2012,25(4):342-345.
[1] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[2] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[3] 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145.
[4] 王邓峰, 王宗乾, 范祥雨, 宋波, 李禹. 天然中空异形萝藦种毛纤维的吸油性能[J]. 纺织学报, 2020, 41(04): 26-32.
[5] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[6] 岳程飞, 丁长坤, 李璐, 程博闻. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[7] 宋乐, 沈兰萍, 黄显雯, 衡芳芳, 马洪波, 欧阳琴, 陈鹏, 王瑄. 木质素/聚丙烯腈复合纤维的制备及其性能[J]. 纺织学报, 2020, 41(02): 7-12.
[8] 李甫, 刘淑强, 费鹏飞, 张曼, 吴改红. 聚丙烯腈纤维差别化及其在环境净化中的应用进展[J]. 纺织学报, 2020, 41(02): 155-164.
[9] 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(01): 21-25.
[10] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/氧化石墨烯纤维的制备及其力学性能和吸附性能[J]. 纺织学报, 2020, 41(01): 15-20.
[11] 吴娇, 于湖生, 万兴云, 田平, 李慧敏, 侯晓欣. 抗菌防螨防霉功能改性粘胶纤维的制备及其性能[J]. 纺织学报, 2019, 40(07): 19-23.
[12] 李倩 丁长坤 张静 杜建华 程博闻. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018, 39(05): 8-13.
[13] 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5.
[14] 普丹丹 王瑞 董余兵 朱曜峰 傅雅琴. 表面改性处理对涤纶织物/聚氯乙烯复合材料界面性能的影响[J]. 纺织学报, 2017, 38(08): 102-107.
[15] 任元林 张悦 谷叶童 曾倩. 含磷阻燃聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2017, 38(08): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!