纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 64-70.doi: 10.13475/j.fzxb.20200700907

• 纤维材料 • 上一篇    下一篇

基于钛镁催化剂合成瓶用聚酯的动力学研究

关震宇1,2,3, 周文乐1, 张玉梅2,3(), 王华平2,3   

  1. 1.中国石油化工股份有限公司 上海石油化工研究院, 上海 201208
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
    3.东华大学 材料科学与工程学院, 上海 201620
  • 收稿日期:2020-07-03 修回日期:2020-12-07 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 张玉梅
  • 作者简介:关震宇(1985—),男,博士生。主要研究方向为新型聚酯催化剂。
  • 基金资助:
    国家重点研发计划项目(2016YFB0301904);中国石油化工集团公司委托项目(217011)

Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst

GUAN Zhenyu1,2,3, ZHOU Wenle1, ZHANG Yumei2,3(), WANG Huaping2,3   

  1. 1. Shanghai Research Institute of Petrochemical Technology, China Petroleum & Chemical Corporation, Shanghai 201208, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2020-07-03 Revised:2020-12-07 Online:2021-03-15 Published:2021-03-17
  • Contact: ZHANG Yumei

摘要:

为研究钛镁复合催化剂(TMPC)在瓶用高黏聚酯制备过程中的活性与耐水解性对合成聚酯性能的影响,通过测试聚酯合成过程中TMPC的水解特性,聚酯的数均分子量、乙醛含量、色相等指标,研究了不同催化体系的酯化、熔融缩聚和固相缩聚反应动力学。结果表明:TMPC催化剂耐水解,在酯化及缩聚过程均有明显的催化作用,在相同聚合条件下按用量推算相当于锑系催化剂活性的36倍,其缩聚时间比乙二醇锑(EGA)缩短60 min,酯化反应活化能均低于EGA与乙二醇钛(EGT)催化剂,固相缩聚速度与EGA接近,活化能略高于EGA;TMPC作为催化剂,经固相缩聚获得了数均分子量为25 734 g/mol的高黏聚酯,其色相与EGA催化聚酯相当,而乙醛含量低至0.59 μg/g,可作为催化瓶用高黏聚酯的绿色高效催化剂。

关键词: 钛镁催化剂, 瓶用聚酯, 高黏聚酯, 聚合反应动力学, 乙醛含量

Abstract:

In order to study the effect of activity and hydrolysis resistance of titanium magnesium composite catalyst (TMPC) on the properties of high viscosity polyester for bottle production, the hydrolysis characteristics of the TMPC catalyst, molecular weight of polyester, acetaldehyde (AA) content and color of polyester were investigated, and the kinetics of esterification, melt polycondensation and solid-state polycondensation of different catalytic systems were studied in detail. The results show that TMPC is resistant to hydrolysis and has obvious catalytic effects on esterification and polycondensation. TMPC was found to be 36 times as active as antimony catalyst under the same polymerization conditions. The polycondensation time was proved 60 minutes shorter than that of ethylene glycol antimony (EGA), and the activity energy of esterification is lower than that of EGA and ethylene glycol titanium (EGT). The solid-state polycondensation rate of TMPC is close to that of EGA, and the activation energy is slightly higher than that of EGA. The high viscosity polyester with number-average molecular weight of 25 734 g/mol was obtained by solid-state polycondensation. The color phase of the product is similar to that of EGA catalyzed polyester, and the acetaldehyde content was as low as 0.59 μg/g, which could be used as a green and efficient catalyst for high viscosity bottle grade polyester.

Key words: Ti-Mg catalyst, bottle polyester, high viscosity polyester, polymerization kinetics, acetaldehyde content

中图分类号: 

  • TQ342.2

表1

不同催化剂体系合成聚酯的性能指标"

催化剂 缩聚工艺 催化剂用量/
(μg·g-1)
稳定剂 特性黏度
(dL·g-1)
数均分子量/
(g·mol-1)
色相 端羧基含量/
(mol·t-1)
乙醛含量/
(μg·g-1)
L b
EGA 熔融 180 PPA 0.741 14 746 85.9 3.23 29 88.00
固相 0.989 26 154 86.4 6.76 21 0.66
EGT 熔融 6 TEP 0.756 15 387 88.6 6.23 20 95.00
固相 0.966 25 167 87.1 8.48 11 0.87
TMPC 熔融 5 TEP 0.771 16 136 88.3 3.58 18 87.00
固相 0.974 25 734 87.6 7.10 9 0.59

图1

不同催化体系合成PET基础切片的红外光谱图"

图2

不同催化体系酯化动力学"

表2

不同催化体系酯化反应活化能"

催化剂 酯化时间/min 反应活化能/(kJ·mol-1)
EGA 105 24.4
EGT 92 20.9
TMPC 90 17.1

图3

不同催化体系熔融缩聚动力学"

表3

不同催化体系熔融缩聚反应活化能"

催化
温度/
K/(g·mol-1·
min-1)
线性回归方程 ΔE/
(kJ·mol-1)
EGA 271 68.87 lnK=-10 209(1/T)+22.98 95.05
276 78.51
281 97.34
286 112.16
EGT 271 72.53 lnK=-9 838(1/T)+22.35 81.76
276 84.31
281 99.98
286 117.47
TMPC 271 102.10 lnK=-7 921(1/T)+23.38 65.82
276 116.87
281 129.58
286 152.27

图4

220 ℃条件下全程固相缩聚特性黏度与乙醛含量的关系"

图5

不同催化体系固相缩聚动力学"

表4

不同催化体系固相缩聚反应活化能"

催化
固相缩聚
温度/℃
K/(g·mol-1·
min-1)
线性回归方程 ΔE/
(kJ·mol-1)
EGA 215 288.11 lnK=-2 250(1/T)+10.27 18.70
220 301.66
225 317.20
230 330.56
EGT 215 261.52 lnK=-2 504(1/T)+10.70 20.81
220 276.03
225 290.81
230 304.62
TMPC 215 270.06 lnK=-2 460(1/T)+10.64 20.44
220 285.61
225 299.60
230 314.43
[1] 李顶松, 曹睿, 赵玲. 聚酯反应催化剂的研究[J]. 聚酯工业, 2020,168(2):36-38.
LI Dingsong, CAO Rui, ZHAO Ling. Research of the catalysts of polyester reaction[J]. Polyester Industry, 2020,168(2):36-38.
[2] 赖柏民, 沈东升, 汪美贞. 浙江省纺织染整企业废水中可吸附有机卤化物调查研究[J]. 环境污染与防治, 2016,38(2):66-69.
LAI Baimin, SHEN Dongsheng, WANG Meizhen. Investigation of adsorbable organic halogens in the dyeing and finishing textile industry in Zhejiang Province[J]. Environmental Pollution and Control, 2016,38(2):66-69.
[3] 萧斌, 王丽苹, 杨先贵, 等. 聚酯催化剂的研究进展[J]. 化学试剂, 2010,32(3):223-226.
XIAO Bin, WANG Liping, YANG Xiangui, et al. Development of research on polyester catalyst[J]. Chemical Reagents, 2010,32(3):223-226.
[4] 郑晓明, 宋振宇, 谢文键. 降低瓶级聚酯切片乙醛含量的工艺优化[J]. 聚酯工业, 2003,16(6):54-57.
ZHENG Xiaoming, SONG Zhenyu, XIE Wenjian. Process optimization of decreasing mass fraction of ethanal in bottle grade PET chips[J]. Polyester Industry, 2003,16(6):54-57.
[5] 孙宾, 王鸣义. 钛系催化剂在聚酯合成领域的应用进展及趋势:上[J]. 纺织导报, 2019 (9):38-49.
SUN Bin, WANG Mingyi. Application and prospect of titanium-based catalysts in the polyester synjournal:Ⅰ[J]. China Textile Leader, 2019 (9):38-49.
[6] ISAMU S, KAWAKAMI T, OKUMURA M. A quantum chemical study on polymerization catalysts for polyesters: catalytic performance of chelated complexes of titanium[J]. Polymer, 2013,54:3297-3305.
doi: 10.1016/j.polymer.2013.04.040
[7] 张大省. 钛系催化剂在聚对苯二甲酸乙二醇酯合成中的应用[J]. 纺织导报, 2020 (1):48-52.
ZHANG Dasheng. Titanium catalyst for the synjournal of polyethylene terephthalate[J]. China Textile Leader, 2020 (1):48-52.
[8] FORTUNATO B, MUNARI P, MANARESI P, et al. Inhibiting effect of phosphorus compounds on model ran esterification and direct esterification reactions catalyzed by titanium tetrabutylate[J]. Polymer, 1994,35(18):4006-4010.
[9] SINGH A, MEHROTRA R C. Novel heterometallic alkoxide coordination systems of polyols (glycols, di-and tri-ethanolamines) derived from the corresponding homometallic moieties[J]. Coord Chem Rev, 2004,248(1/2):101-118.
[10] KRASIL'NIKOV V N, SHTIN A P, GYRDASOVA O I, et al. Synjournal and properties of titanium glycolate Ti(OCH2CH2O)2[J]. Russian Journal of Inorganic Chemistry, 2008,53(7):1146-1151.
[11] 朱国强. 聚酯端羧基控制的改进[J]. 聚酯工业, 2008,21(4):38-40.
ZHU Guoqiang. The improvement of the control of PET carboxyl end group value[J]. Polyester Industry, 2008,21(4):38-40.
[12] LI X G, ZHOU Z L, WU X G, et al. Structure and properties of liquid crystalline naphthalenediol copolyesters[J]. Journal of Applied Polymer Science, 1994,51(11):1913-1921.
[13] 江渊, 吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J]. 高分子通报, 2001(2):62-68.
JIANG Yuan, WU Liheng. Applications of infrared spectroscopy in the structural study of poly(ethylene terephthalate) fibers[J]. Polymer Bulletin, 2001(2):62-68.
[14] 黄关葆. 线型饱和聚酯与共聚酯的合成及性能研究[D]. 成都:四川大学, 2003: 44-46.
HUANG Guanbao. Studies on the synthesis and properties of linear saturated polyesters and copolyesters[D]. Chengdu:Sichuan Universiy, 2003: 44-46.
[15] 窦玉芹, 黄关葆. 新型无锑催化剂在聚酯合成中酯化反应动力学研究[J]. 聚酯工业, 2005,18(2):21-23.
DOU Yuqin, HUANG Guanbao. Study on the kinetics of PTA esterification with non-antimony catalysts[J]. Polyester Industry, 2005,18(2):21-23.
[16] RILER G, FASERFORSCHU U S W. Kinetics of polycondensation of BHET[J]. Text Technol, 1973,24(6):235-239.
[17] 娄佳慧, 王锐, 张文娟, 等. 有机钛-硅催化剂合成聚酯的动力学研究[J]. 纺织学报, 2018,39(7):1-6.
LOU Jiahui, WANG Rui, ZHANG Wenjuan, et al. Synjournal kinetics of polyester by organic titanium-silicon catalysts[J]. Journal of Textile Research, 2018,39(7):1-6.
[18] JABARIN S A, LOFGREN E A. Solid state polymerization of poly(ethylene terephthalate): kinetic and property parameters[J]. Journal of Applied Polymer Science, 1986,32(6):5315-5335.
[19] KIM T Y, LOFGREN E A, JABARIN S A. Solid-state polymerization of poly(ethylene terephthalate): I: experimental study of the reaction kinetics and properties[J]. Journal of Applied Polymer Science, 2003,89(1):197-212.
[1] 王晶晶, 陈咏, 王朝生, 王华平, 边树昌, 乌婧. 生物基聚对苯二甲酸丙二醇酯低聚物的提取及其热性能[J]. 纺织学报, 2020, 41(06): 1-7.
[2] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
[3] 张腾飞, 石禄丹, 胡红梅, 王宇, 王学利, 俞建勇. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019, 40(06): 1-7.
[4] 方孝芬 王朝生. 新型阻燃亲水聚酯纤维的制备及其性能[J]. 纺织学报, 2013, 34(2): 18-22.
[5] 张国强 王锐 朱志国 董振峰 . 新型抗静电聚酯纤维的制备及其结构性能[J]. 纺织学报, 2013, 34(1): 7-11.
[6] 徐阳 王肖娜 杜远之 张亚曦 魏取福. 静电和熔融纺丝法对PET纤维表面结构的影响[J]. 纺织学报, 2012, 33(9): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!