纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 130-135.doi: 10.13475/j.fzxb.20200407206

• 染整与化学品 • 上一篇    下一篇

纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能

丁子寒, 邱华()   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2020-04-28 修回日期:2020-12-21 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 邱华
  • 作者简介:丁子寒(1996—),女,硕士生。主要研究方向为防水透湿织物。

Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics

DING Zihan, QIU Hua()   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2020-04-28 Revised:2020-12-21 Online:2021-03-15 Published:2021-03-17
  • Contact: QIU Hua

摘要:

为提升水性聚氨酯涂层织物的防水透湿功能,采用R972疏水型气相纳米二氧化硅对水性聚氨酯进行共混改性,以涂层的方式对纯棉针织物进行整理。利用红外光谱仪、扫描电子显微镜和超景深显微镜对纳米二氧化硅水性聚氨酯复合涂层的结构和形貌进行表征。研究了纳米二氧化硅质量分数对织物防水透湿性能的影响。结果表明:疏水型气相纳米二氧化硅可以在水性聚氨酯体系中发挥良好的纳米效应,并且对水性聚氨酯涂层膜的结构并无较大影响;当纳米二氧化硅质量分数为1.5%时,涂层膜的吸水率降低55.4%,涂层织物的透湿量增加54.7%,耐静水压和接触角分别增大86%和131.4%,同时复合涂层的力学性能也得到了显著改善。

关键词: 纳米二氧化硅, 水性聚氨酯, 防水透湿, 棉针织物, 涂层织物, 功能纺织品

Abstract:

In order to improve the water resistance of water-based polyurethane, R972 hydrophobic fumed nano-silica was used to blend and modify the water-based polyurethane, and a pure cotton knitted fabric was treated to improve the waterproof and moisture permeability of the fabric. The structure and morphology of nano-silica water-borne polyurethane coatings were characterized by infrared spectroscopy, scanning electron microscopy, and super depth-of-field microscope. The effect of nano-silica content on the waterproof and moisture-permeable properties of fabrics was investigated using the single factor analysis. The results show that hydrophobic fumed nano-silica demonstrates a good nano-effect in aqueous polyurethane systems, and its addition has no great effect on the structure of the aqueous polyurethane coating film. When the nano-silica content is 1.5%, the water absorption of the coating film decreased by 55.4%, the moisture permeability of the coated fabric increased by 54.7%, the hydrostatic pressure resistance and contact angle increased by 86% and 131.4% repectively, and its mechanical properties were also significantly improved.

Key words: nano-silica, water-based polyurethane, waterproof and moisture-permeable, cotton knitted fabric, coated fabric, functional textiles

中图分类号: 

  • TS195.5

图1

WPU膜及SiO2/WPU涂层膜的红外光谱图"

图2

不同质量分数纳米二氧化硅的SiO2/WPU涂层膜的SEM照片(×2 000)"

图3

涂层前后织物的超景深显微镜照片(×150)"

表1

纳米二氧化硅质量分数对涂层膜吸水性和涂层织物接触角的影响"

SiO2质量
分数/%
吸水前
质量/g
吸水后
质量/g
吸水率/% 接触角/(°)
0 0.157 1 0.182 0 15.849 58.58
0.5 0.154 0 0.173 8 12.857 124.25
1.0 0.178 0 0.192 5 8.146 128.40
1.5 0.131 7 0.141 0 7.062 135.58
2.0 0.106 3 0.112 5 5.833 129.46
2.5 0.091 5 0.094 6 3.388 131.22

图4

纳米二氧化硅质量分数对涂层织物耐静水压的影响"

图5

纳米二氧化硅质量分数对涂层织物透湿性的影响"

图6

纳米二氧化硅质量分数对涂层膜断裂强力及断裂伸长率的影响"

[1] 陈洋, 曹婉鑫, 唐瑶, 等. 纳米二氧化硅改性水性聚氨酯的研究进展[J]. 西部皮革, 2014(23):30-34.
CHEN Yang, CAO Wanxin, TANG Yao, et al. Research progress in nano-SiO2 modified waterborne polyurethane[J]. Western Leather, 2014 (23):30-34.
[2] 朱敏, 周向东. 短链含氟丙烯酸酯改性水性聚氨酯的合成及性能研究[J]. 印染助剂, 2013(10):7-11.
ZHU Min, ZHOU Xiangdong. Preparation and properties of functionalized graphene modified waterborne polyurethane[J]. Textile Auxiliaries, 2013(10):7-11.
[3] 赵小亮, 孙元娜, 刘凯. 环氧树脂改性水性聚氨酯的耐水性能[J]. 印染, 2018,44(20):33-36.
ZHAO Xiaoliang, SUN Yuanna, LIU Kai. Water resistance of waterborne polyurethane modified by epoxy resin[J]. China Dyeing & Finishing, 2018,44(20):33-36.
[4] FU C, ZHENG Z, YANG Z, et al. A fully bio-based waterborne polyurethane dispersion from vegetable oils: from synjournal of precursors by thiol-ene reaction to study of final material[J]. Progress in Organic Coatings, 2014,77(1):53-60.
doi: 10.1016/j.porgcoat.2013.08.002
[5] 张云波, 张珍竹, 罗耀发, 等. 气相二氧化硅改性水性聚氨酯涂层剂的制备及性能研究[J]. 纺织导报, 2013 (8):66-68.
ZHANG Yunbo, ZHANG Zhenzhu, LUO Yaofa, et al. Preparation and property study of fumed silica-containing aqueous polyurethane coating agent[J]. China Textile Leader, 2013 (8):66-68.
[6] 周金丽, 朱梦雪, 俞霞, 等. PVP对水性聚氨酯防水透湿涂层整理的影响[J]. 绍兴文理学院学报(自科版), 2016,36(8):82-85.
ZHOU Jinli, ZHU Mengxue, YU Xia, et al. The effect of PVP on waterproof and moisture permeable coating[J]. Journal of Shaoxing University (Natural Science), 2016,36(8):82-85.
[7] 张思, 吴敏. 紫外光固化密胺树脂的合成及涂层织物性能测试[J]. 纺织学报, 2019,40(6):64-67.
ZHANG Si, WU Min. Synjournal of UV curing melamine resin and performance testing of its coating fabric[J]. Journal of Textile Research, 2019,40(6):64-67.
[8] 张琼, 刘翰霖, 李平平, 等. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019,40(2):1-7.
ZHANG Qiong, LIU Hanlin, LI Pingping, et al. Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber membrane[J]. Journal of Textile Research, 2019,40(2):1-7.
doi: 10.1177/004051757004000101
[9] 周金丽, 单将, 邵建中, 等. 丝素/聚氨酯防水透湿涂层剂的制备及其应用[J]. 丝绸, 2013(4):10-15.
ZHOU Jinli, SHAN Jiang, SHAO Jianzhong, et al. Preparation and application of silk fibroin/polyurethane waterproof and breathable coating agent[J]. Journal of Silk, 2013 (4):10-15.
[10] 曲家乐, 王全杰, 王闪闪, 等. 纳米二氧化硅改性水性聚氨酯[J]. 皮革与化工, 2013(1):6-11.
QU Jiale, WANG Quanjie, WANG Shanshan, et al. Waterborne polyurethane modified by nano-SiO2[J]. Leather and Chemicals, 2013 (1):6-11.
[11] 生俊露. 静电纺纳米纤维防水透湿膜的加热/涂层改性及性能优化研究[D]. 上海:东华大学, 2017: 4-5.
SHENG Junlu. Heat/coating modification and performance optimization of electrospun waterproof-breathable nanofibrous membranes[D]. Shanghai:Donghua University, 2017: 4-5.
[12] 胡勇杰. 纳米二氧化硅/聚醚共聚乙酰胺防水透气涂层织物的研制及其性能[J]. 纺织学报, 2018,39(10):109-114.
HU Yongjie. Preparation and performance of waterproof breathable nano silica dioxide microspheres/polyether block amide coating fabrics[J]. Journal of Textile Research, 2018,39(10):109-114.
[13] 张文娟, 纪峰, 张瑞云, 等. 毛织物孔隙特征与透湿性关系[J]. 纺织学报, 2019,40(1):67-72.
ZHANG Wenjuan, JI Feng, ZHANG Ruiyun, et al. Study on relationship between capillary characteristics and moisture permeability of wool fabrics[J]. Journal of Textile Research, 2019,40(1):67-72.
[14] 高党鸽, 张文博, 马建中. 防水透湿织物的研究进展[J]. 印染, 2011,37(21):45-50.
GAO Dangge, ZHANG Wenbo, MA Jianzhong. Research progress in waterproof and moisture permeable fabrics[J]. China Dyeing & Finishing, 2011,37(21):45-50.
[15] 马建中, 张文博, 高党鸽, 等. 聚丙烯酸酯/纳米SiO2织物涂层整理剂的性能[J]. 高分子材料科学与工程, 2012(12):63-66.
MA Jianzhong, ZHANG Wenbo, GAO Dangge, et al. Properties of polyacrylate/nano-SiO2 composite used as fabric coating agent[J]. Polymer Materials Science and Engineering, 2012 (12):63-66.
[16] 陈永军, 卿宁, 赵燕, 等. 纳米二氧化硅改性水性聚氨酯分散液的制备与表征[J]. 涂料工业, 2014,44(1):40-45.
CHEN Yongjun, QING Ning, ZHAO Yan, et al. Preparation and characterization of nano-silica modified waterborne polyurethane dispersion[J]. Paint and Coatings Industry, 2014,44(1):40-45.
[1] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
[2] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[3] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[4] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[5] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[6] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[7] 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128.
[8] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105.
[9] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[10] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[11] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平棉针织物双向拉伸线圈形态分析[J]. 纺织学报, 2019, 40(11): 64-68.
[12] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
[13] 张帆, 张儒, 周文常, 周辉, 汪南方. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019, 40(08): 101-108.
[14] 徐艳, 籍晓倩, 陈坤林, 王潮霞. 自着色水性聚氨酯制备及其在棉织物涂层中的应用[J]. 纺织学报, 2019, 40(07): 85-89.
[15] 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!