纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 33-41.doi: 10.13475/j.fzxb.20200601109

• 纤维材料 • 上一篇    下一篇

静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能

赵新哲, 王绍霞, 高晶(), 王璐   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2020-06-01 修回日期:2020-11-18 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 高晶
  • 作者简介:赵新哲(1989—),女,博士生。主要研究方向为生物医用纺织材料。

Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes

ZHAO Xinzhe, WANG Shaoxia, GAO Jing(), WANG Lu   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2020-06-01 Revised:2020-11-18 Online:2021-04-15 Published:2021-04-20
  • Contact: GAO Jing

摘要:

为改善胶原/聚环氧乙烷纳米纤维膜在液态环境下的结构稳定性,利用静电纺丝技术制备胶原/聚环氧乙烷纳米纤维膜,并用不同浓度的1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐/N-羟基琥珀酰亚胺对其进行交联改性,对其在液态环境下的溶胀性能、干湿态力学性能、溶血及凝血性能进行测试与分析。结果表明:经交联改性后,胶原/聚环氧乙烷纳米纤维膜在液态环境下浸泡7 d后仍可保持良好的纳米纤维形貌,纤维的溶胀率低于180%,力学性能得到明显改善;交联改性后的纤维膜溶血率均远低于2%,不会对红细胞造成破坏,且凝血性能得到明显改善,凝血指数由未交联的48%降低至20%以下。

关键词: 胶原纳米纤维膜, 聚环氧乙烷, 交联改性, 碳二亚胺, 溶血性能, 凝血性能, 静电纺丝

Abstract:

In order to maintain and improve the structural stability of the collagen/polyethylene oxide nanofiber membranes under liquous conditions, the improved collagen/polyethylene oxide nanofiber membranes were prepared through electrospinning and by modifying the polymer mix with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide. The degree of swelling ratio, mechanical performance in dry and wet states, hemolytic performance and blood clotting property of the nanofiber membranes were measured and analyzed. The results show that the nanofibers is able to maintain its morphology after being soaked in phosphate buffered saline for 7 d with the swelling of fiber reduced (lower than 180%) and mechanical performance improved. In addition, the hemolysis percentage of crosslinked nanofiber membranes were considerably lower than 2%, indicating no damage to the red blood cells. More importantly, the blood clotting index of all crosslinked nanofiber membranes were all lower than 20% when compared to 48% with a non-crosslinked sample, indicating superior clotting property.

Key words: collagen nanofiber membrane, polyethylene oxide, crosslinking modification, carbodiimide, hemolysis, blood clotting property, electrospinning

中图分类号: 

  • TS171

图1

EDC/NHS和GA交联Col/PEO纳米纤维膜的交联度测试结果"

图2

GA和EDC/NHS交联胶原的交联机制"

图3

PBS浸泡前后Col/PEO纳米纤维膜的形貌"

图4

交联前后Col/PEO纳米纤维膜的红外光谱图"

图5

胶原以及交联前后Col/PEO纳米纤维膜的DSC升温曲线"

图6

交联前后Col/PEO纳米纤维膜的应力-应变曲线"

表1

交联后Col/PEO纳米纤维膜的力学性能"

样品编号 断裂强度/MPa 断裂伸长率/%
干态 湿态 干态 湿态
1# 3.69±0.71 1.93±0.65 31.44±3.59 64.93±6.25
2# 4.92±0.49 3.06±0.71 18.57±2.72 40.30±5.31
3# 5.39±0.65 3.18±0.38 24.36±3.03 38.80±4.78
4# 5.42±0.73 3.85±0.94 14.76±2.61 56.63±5.45

图7

Col/PEO纳米纤维膜溶血测试上清液外观图及溶血率测试结果"

图8

交联前后Col/PEO纳米纤维膜及医用纱布的凝血指数"

[1] KIMNA C, TAMBURACI S, TIHMINLIOGLU F. Novel zein-based multilayer wound dressing membranes with controlled release of gentamicin[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2018: 107(6):2057-2070.
pmid: 30576095
[2] ZHAO X, WU H, GUO B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing[J]. Biomaterials, 2017,122:34-47.
[3] XU R, LUO G, XIA H, et al. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction[J]. Biomaterials, 2015,40:1-11.
pmid: 25498800
[4] LIU S J, KAU Y C, CHOU C Y, et al. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing[J]. Journal of Membrane Science, 2010,355(1/2):53-59.
[5] AGARWAL S, WENDORFF J H, GREINER A. Progress in the field of electrospinning for tissue engineering applications[J]. Advanced Materials, 2009,21(32/33):3343-3351.
[6] ZAHEDI P, REZAEIAN I, RANAEI-SIADAT S O, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polymers for Advanced Technologies, 2009,21:77-95.
[7] ADELI H, KHORASANI M T, PARVAZINIA M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay[J]. International Journal of Biological Macromolecules, 2019,122:238-254.
[8] ZEUGOLIS D I, KHEW S T, YEW E S, et al. Electro-spinning of pure collagen nano-fibres-just an expensive way to make gelatin?[J]. Biomaterials, 2008,29(15):2293-2305.
pmid: 18313748
[9] SALVATORE L, MADAGHIELE M, PARISI C, et al. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life[J]. Journal of Biomedical Materials Research Part A, 2014,102(12):4406-4414.
[10] TAKEDA N, TAMURA K, MINEGUCHI R, et al. In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue[J]. Journal of Artificial Organs, 2016,19(2):141-148.
pmid: 26472433
[11] KOZLOWSKA J, SIONKOWSKA A. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials[J]. International Journal of Biological Macromolecules, 2015,74:397-403.
[12] AKHSHABI S, BIAZAR E, SINGH V, et al. The effect of glutaraldehyde cross-linker on structural and biocompatibility properties of collagen-chondroitin sulfate electrospun mat[J]. Materials Technology, 2017,33(4):253-261.
[13] EVERAERTS F, TORRIANNI M, HENDRIKS M, et al. Biomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinks[J]. Journal of Biomedical Materials Research Part A, 2008,85(2):547-555.
doi: 10.1002/jbm.a.31524 pmid: 17729260
[14] NAGAI N, YUNOKI S, SUZUKI T, et al. Application of cross-linked salmon atelocollagen to the scaffold of human periodontal ligament cells[J]. Journal of Bioscience and Bioengineering, 2004,97(6):389-394.
[15] ELAHI M F, GUAN G, WANG L, et al. Improved hemocompatibility of silk fibroin fabric using layer-by-layer polyelectrolyte deposition and heparin immobilization[J]. Journal of Applied Polymer Science, 2014,131(18):40772.
[16] SEON G M, LEE M H, KWON B J, et al. Functional improvement of hemostatic dressing by addition of recombinant batroxobin[J]. Acta Biomaterials, 2017,48:175-185.
[17] HUANG C, CHEN R, KE Q, et al. Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts[J]. Colloids and Surfaces B: Biointerfaces, 2011,82(2):307-315.
pmid: 20888196
[18] BEDRAN-RUSSO A K, CASTELLAN C S, SHINOHARA M S, et al. Characterization of biomodified dentin matrices for potential preventive and reparative therapies[J]. Acta Biomaterials, 2011,7(4):1735-1741.
[19] ZHANG Y Z, VENUGOPAL J, HUANG Z M, et al. Crosslinking of the electrospun gelatin nanofibers[J]. Polymer, 2006,47(8):2911-2917.
[20] MORGADO P I, AGUIAR-RICARDO A, CORREIA I J. Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship[J]. Journal of Membrane Science, 2015,490:139-151.
[21] CHEN S, CUI S, HU J, et al. Pectinate nanofiber mat with high absorbency and antibacterial activity: a potential superior wound dressing to alginate and chitosan nanofiber mats[J]. Carbohydrate Polymers, 2017,174:591-600.
pmid: 28821109
[22] NEWTON D, MAHAJAN R, AYRES C, et al. Regulation of material properties in electrospun scaffolds: role of cross-linking and fiber tertiary structure[J]. Acta Biomaterials, 2009,5(1):518-529.
[23] ACHNECK H E, SILESHI B, JAMIOLKOWSKI R M, et al. A comprehensive review of topical hemostatic agents: efficacy and recommendations for use[J]. Annals of Surgery, 2010,251(2):217-228.
doi: 10.1097/SLA.0b013e3181c3bcca pmid: 20010084
[24] SPOTNITZ W D, BURKS S. Hemostats, sealants, and adhesives: components of the surgical toolbox[J]. Transfusion, 2008,48(7):1502-1516.
pmid: 18422855
[1] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[2] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[3] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[4] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[5] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[6] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[7] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[8] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[9] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[10] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[11] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[12] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[13] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[14] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[15] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!