纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 33-41.doi: 10.13475/j.fzxb.20200601109
ZHAO Xinzhe, WANG Shaoxia, GAO Jing(), WANG Lu
摘要:
为改善胶原/聚环氧乙烷纳米纤维膜在液态环境下的结构稳定性,利用静电纺丝技术制备胶原/聚环氧乙烷纳米纤维膜,并用不同浓度的1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐/N-羟基琥珀酰亚胺对其进行交联改性,对其在液态环境下的溶胀性能、干湿态力学性能、溶血及凝血性能进行测试与分析。结果表明:经交联改性后,胶原/聚环氧乙烷纳米纤维膜在液态环境下浸泡7 d后仍可保持良好的纳米纤维形貌,纤维的溶胀率低于180%,力学性能得到明显改善;交联改性后的纤维膜溶血率均远低于2%,不会对红细胞造成破坏,且凝血性能得到明显改善,凝血指数由未交联的48%降低至20%以下。
中图分类号:
[1] |
KIMNA C, TAMBURACI S, TIHMINLIOGLU F. Novel zein-based multilayer wound dressing membranes with controlled release of gentamicin[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2018: 107(6):2057-2070.
pmid: 30576095 |
[2] | ZHAO X, WU H, GUO B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing[J]. Biomaterials, 2017,122:34-47. |
[3] |
XU R, LUO G, XIA H, et al. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction[J]. Biomaterials, 2015,40:1-11.
pmid: 25498800 |
[4] | LIU S J, KAU Y C, CHOU C Y, et al. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing[J]. Journal of Membrane Science, 2010,355(1/2):53-59. |
[5] | AGARWAL S, WENDORFF J H, GREINER A. Progress in the field of electrospinning for tissue engineering applications[J]. Advanced Materials, 2009,21(32/33):3343-3351. |
[6] | ZAHEDI P, REZAEIAN I, RANAEI-SIADAT S O, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polymers for Advanced Technologies, 2009,21:77-95. |
[7] | ADELI H, KHORASANI M T, PARVAZINIA M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay[J]. International Journal of Biological Macromolecules, 2019,122:238-254. |
[8] |
ZEUGOLIS D I, KHEW S T, YEW E S, et al. Electro-spinning of pure collagen nano-fibres-just an expensive way to make gelatin?[J]. Biomaterials, 2008,29(15):2293-2305.
pmid: 18313748 |
[9] | SALVATORE L, MADAGHIELE M, PARISI C, et al. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life[J]. Journal of Biomedical Materials Research Part A, 2014,102(12):4406-4414. |
[10] |
TAKEDA N, TAMURA K, MINEGUCHI R, et al. In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue[J]. Journal of Artificial Organs, 2016,19(2):141-148.
pmid: 26472433 |
[11] | KOZLOWSKA J, SIONKOWSKA A. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials[J]. International Journal of Biological Macromolecules, 2015,74:397-403. |
[12] | AKHSHABI S, BIAZAR E, SINGH V, et al. The effect of glutaraldehyde cross-linker on structural and biocompatibility properties of collagen-chondroitin sulfate electrospun mat[J]. Materials Technology, 2017,33(4):253-261. |
[13] |
EVERAERTS F, TORRIANNI M, HENDRIKS M, et al. Biomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinks[J]. Journal of Biomedical Materials Research Part A, 2008,85(2):547-555.
doi: 10.1002/jbm.a.31524 pmid: 17729260 |
[14] | NAGAI N, YUNOKI S, SUZUKI T, et al. Application of cross-linked salmon atelocollagen to the scaffold of human periodontal ligament cells[J]. Journal of Bioscience and Bioengineering, 2004,97(6):389-394. |
[15] | ELAHI M F, GUAN G, WANG L, et al. Improved hemocompatibility of silk fibroin fabric using layer-by-layer polyelectrolyte deposition and heparin immobilization[J]. Journal of Applied Polymer Science, 2014,131(18):40772. |
[16] | SEON G M, LEE M H, KWON B J, et al. Functional improvement of hemostatic dressing by addition of recombinant batroxobin[J]. Acta Biomaterials, 2017,48:175-185. |
[17] |
HUANG C, CHEN R, KE Q, et al. Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts[J]. Colloids and Surfaces B: Biointerfaces, 2011,82(2):307-315.
pmid: 20888196 |
[18] | BEDRAN-RUSSO A K, CASTELLAN C S, SHINOHARA M S, et al. Characterization of biomodified dentin matrices for potential preventive and reparative therapies[J]. Acta Biomaterials, 2011,7(4):1735-1741. |
[19] | ZHANG Y Z, VENUGOPAL J, HUANG Z M, et al. Crosslinking of the electrospun gelatin nanofibers[J]. Polymer, 2006,47(8):2911-2917. |
[20] | MORGADO P I, AGUIAR-RICARDO A, CORREIA I J. Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship[J]. Journal of Membrane Science, 2015,490:139-151. |
[21] |
CHEN S, CUI S, HU J, et al. Pectinate nanofiber mat with high absorbency and antibacterial activity: a potential superior wound dressing to alginate and chitosan nanofiber mats[J]. Carbohydrate Polymers, 2017,174:591-600.
pmid: 28821109 |
[22] | NEWTON D, MAHAJAN R, AYRES C, et al. Regulation of material properties in electrospun scaffolds: role of cross-linking and fiber tertiary structure[J]. Acta Biomaterials, 2009,5(1):518-529. |
[23] |
ACHNECK H E, SILESHI B, JAMIOLKOWSKI R M, et al. A comprehensive review of topical hemostatic agents: efficacy and recommendations for use[J]. Annals of Surgery, 2010,251(2):217-228.
doi: 10.1097/SLA.0b013e3181c3bcca pmid: 20010084 |
[24] |
SPOTNITZ W D, BURKS S. Hemostats, sealants, and adhesives: components of the surgical toolbox[J]. Transfusion, 2008,48(7):1502-1516.
pmid: 18422855 |
[1] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[2] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[3] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[4] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
[5] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[6] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[7] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[8] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[9] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[10] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[11] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[12] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[13] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[14] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[15] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
|