纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 55-61.doi: 10.13475/j.fzxb.20200800207

• 纤维材料 • 上一篇    下一篇

聚乙烯醇增强氯化聚乙烯-受阻酚阻尼复合材料的制备及其性能

姜生1,2(), 吉利梅1,2   

  1. 1.江苏工程职业技术学院 科技处, 江苏 南通 226001
    2.江苏省先进纺织工程中心, 江苏 南通 226001
  • 收稿日期:2020-08-03 修回日期:2021-01-05 出版日期:2021-04-15 发布日期:2021-04-20
  • 作者简介:姜生(1971—),男,教授,博士。主要研究方向为橡塑功能材料的研发。E-mail: jiangsheng2437@126.com
  • 基金资助:
    江苏南通市科技局基础科学研究计划项目(JC2018107)

Polyvinyl alcohol as reinforcement in damping composites consisting of chlorinated polyethylene and hindered phenol

JIANG Sheng1,2(), JI Limei1,2   

  1. 1. Division of Science and Technology, Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226001, China
    2. Jiangsu Advanced Textile Engineering Technology Center, Nantong, Jiangsu 226001, China
  • Received:2020-08-03 Revised:2021-01-05 Online:2021-04-15 Published:2021-04-20

摘要:

为拓宽聚乙烯醇(PVA)的应用领域,以聚乙烯醇为增强体,氯化聚乙烯(CPE)和4,4'-甲撑双(2,6-二叔丁基苯酚)(AO 4426)的混合物为基体制备了一系列阻尼复合材料。借助动态热机械分析仪、差示扫描量热仪、傅里叶红外光谱仪、扫描电子显微镜和力学试验机对复合材料的性能和微观形态进行测试与表征。结果表明:添加PVA后复合材料仍保持CPE-AO 4426的双阻尼峰特性,且储能模量和阻尼温域内损耗模量曲线下的面积随PVA质量分数的增大而增大,表明复合材料的阻尼性能获得了较大的改善;PVA的羟基与AO 4426的羟基间形成了氢键,且随着PVA的添加使复合材料的断裂应力和应变均呈先上升后下降趋势。

关键词: 聚乙烯醇, 氯化聚乙烯, 4,4'-甲撑双(2,6-二叔丁基苯酚), 微晶富集, 阻尼性能, 阻尼复合材料

Abstract:

A series of damping composites consisting of polyvinyl alcohol (PVA) acted as reinforcement and the mixture of chlorinated polyethylene (CPE) and 4,4'-methylene-bis-(2,6-dis-tert-butylph-enol) (AO 4426) acting as the matrix were prepared in order to broaden the application field of PVA. The properties and microstructure of the composites were measured and characterized by means of dynamic thermomechanical analyzer, differential thermal analyzer, Fourier infrared spectrometer, scanning electron microscope and mechanical test equipment. The results show that the composites still maintains characteristics of two damping peaks of CPE-AO 4426 composite after adding PVA,and the storage modulus and area under loss modulus curve at the damping temperature range of composites increased with the increase of PVA mass fraction, indicating that the damping performance of composites obtained greater improvement. The hydrogen bonds were formed between hydroxyl group of PVA and hydroxyl group of AO 4426. The fracture stress and the strain of the composite both demonstrate an increase and then a decrease with increase of PVA.

Key words: polyvinyl alcohol, chlorinated polyethylene, 4,4'-methylene-bis-(2,6-di-tert-butylphenol), microcrystalline enrichment, damping property, damping composite

中图分类号: 

  • TQ327.11

图1

调浆装置示意图"

表1

PVA/(CPE-AO 4426)膜的制备配方"

试样编号 PVA质量分数/% CPE-AO 4426质量分数/%
1# 0 100
2# 10 90
3# 20 80
4# 30 70
5# 40 60

图2

PVA质量分数对PVA/(CPE-AO 4426)复合材料储能模量的影响"

图3

PVA质量分数对PVA/(CPE-AO 4426)损耗因子的影响"

图4

不同PVA质量分数PVA/(CPE-AO 4426)复合材料的扫描电镜照片(×3 000)"

图5

PVA质量分数对PVA/(CPE-AO 4426)复合材料LA值的影响"

图6

AO 4426及PVA/(CPE-AO 4426)复合材料的红外光谱图"

图7

AO 4426及PVA/(CPE-AO 4426)复合材料的DSC曲线"

图8

不同PVA质量分数的PVA/(CPE-AO 4426)复合材料的应力-应变曲线"

[1] 姜生, 倪诗吟, 张利娟. 锦纶对纺织废胶-受阻酚微观形态与性能的影响[J]. 纺织学报, 2017,38(3):72-77.
JIANG Sheng, NI Shiyin, ZHANG Lijuan. Properties of textile waste rubber sound absorption composites reinforced with nylon fiber[J]. Journal of Textile Research, 2017,38(3):72-77.
[2] 姜生. 中空纤维增强废橡胶基吸声复合材料的结构与性能[J]. 高分子材料科学与工程, 2015,31(12):73-77.
JIANG Sheng. Structure and properties of hollow fiber as reinforcement in acoustics absorption wasted rubber composites[J]. Polymer Materials Science & Engineering, 2015,31(12):73-77.
[3] 史新妍, 毕薇娜. EVM 基共混物的阻尼性能[J]. 高分子材料科学与工程, 2011,27(5):89-92.
SHI Xinyan, BI Weina. Damping of blends of EVM/EPDM and EVM/NBR[J]. Polymer Materials Science & Engineering, 2011,27(5):89-92.
[4] ZHANG R, HE X R, LAI Z P, et al. Effect of some inorganic particles on the softening dispersion of the dynamics of butyl rubber[J]. Polymer Bulletin, 2016,74(4):1031-1043.
[5] ZHOU R, GAO W Q, XIA L H, et al. The study of damping property and mechanism of thermoplastic polyurethane/phenolic resin through a combined experiment and molecular dynamics simulation[J]. Journal of Materials Science, 2018,53:9350-9362.
[6] XU K, CHEN R, WANG C S, et al. Organomontmorillonite-modified soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs)[J]. Journal of Thermal Analysis and Calorimetry, 2016,126(3):1253-1260.
[7] 谢海, 陈守兵, 王廷梅. PU/PMMA IPNs复合材料的摩擦学性能和阻尼性能研究[J]. 摩擦学学报, 2018,38(1):1-7.
XIE Hai, CHEN Shoubing, WANG Tingmei, et al. Tribological and damping properties of PU/PMMA IPNs[J]. Journal of Tribology, 2018,38(1):1-7.
[8] LV X S, HUANG Z X, HUANG C, et al. Damping properties and the morphology analysis of the polyurethane/epoxy continuous gradient IPN materials[J]. Composites Part B: Engineering, 2016,88:139-149.
[9] FARZAD Zahedi, IRAJ Amiri Amraei, MOHAMMAD Ali Fathizade. Investigation of dynamic-mechanical properties of multilayer latex IPNs (MLIPNs) with core/shell morphology: synjournal and characterization[J]. Polymer, 2016,83:162-171.
[10] ZHANG F, FENG P J, WANG T, et al. Mechanical- electric response characteristics of 1-3 cement based piezoelectric composite under impact loading[J]. Construction and Building Materials, 2019,228(20):116781.
[11] XU D Y, CHENG X, GUO X J, et al. Design, fabrication and property investigation of cement/polymer based 1-3 connectivity piezo-damping composites[J]. Construction and Building Materials, 2015,84(1):219-223.
[12] 李建, 杜明, 黄志雄. PMN/CB/PF/ⅡR复合材料制备及其阻尼性能[J]. 材料工程, 2018,46(6):125-131.
LI Jian, DU Ming, HUANG Zhixiong. Preparation and damping properties of PMN/CB/PF/ⅡR composite[J]. Journal of Materials Engineering, 2018,46(6):125-131.
[13] ZHANG L, CHEN D L, FAN X Q, et al. Effect of hindered phenol crystallization on properties of organic hybrid damping materials[J]. Materials, 2019,12:1008-1020.
doi: 10.3390/ma12071008
[14] JIANG S, JI L M. Damping properties and micro- morphology of textile waste rubber powder-AO 2246 composites[J]. Journal of Composite Materials, 2016,50(7):963-970.
[15] 张志, 许勇, 岳耀, 等. 受阻酚AO-60/丁腈橡胶-环氧化天然橡胶-天然橡胶复合材料的制备及其阻尼性能[J]. 复合材料学报, 2019,36(8):1796-1803.
ZHANG Zhi, XU Yong, YUE Yao, et al. Preparation and damping properties of hindered phenol AO-60/nitrile butadiene rubber-epoxidized natural rubber-natural rubber composites[J]. Acta Materiae Compositae Sinica, 2019,36(8):1796-1803.
[16] FU B H, JIANG S, ZHANG T H. 4,4'-methylene-bis (2,6-di-t-butylphenol) as filler in high-damping chlorinated polyethylene composites[J]. Journal of Applied Polymer Science, 2019,136:48321.
[17] 杨瑞宁, 吴丝竹, 祝静, 等. 受阻酚/丁腈橡胶体系的阻尼性能及分子动力学模拟[J]. 高分子材料科学与工程, 2018,34(12):36-44.
YANG Ruining, WU Sizhu, ZHU Jing, et al. Damping performance and molecular dynamics simulation of hindered phenol/nitrile-butadiene rubber systems[J]. Polymer Materials Science & Engineering, 2018,34(12):36-44.
[18] YANG D W, ZHAO X Y, CHAN T, et al. Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods[J]. Journal of Materials Science, 2016,51(12):5760-5774.
doi: 10.1007/s10853-016-9878-7
[19] 姜生, 张慧萍, 晏雄. 氯化聚乙烯/AO 2246复合材料的阻尼性能和微观形态[J]. 合成橡胶工业, 2010,33(6):464-467.
JIANG Sheng, ZHANG Huiping, YAN Xiong. Damping property and microstructure of chlorinated polyethylene / AO 2246 composites[J]. China Synthetic Rubber Industry, 2010,33(6):464-467.
[20] 张林, 左孔成, 朱旻昊, 等. 片状石墨粉/受阻酚小分子-丁腈橡胶共混物动态力学性能[J]. 复合材料学报, 2015,32(5):1480-1486.
ZHANG Lin, ZUO Kongcheng, ZHU Minhao, et al. Dynamic mechanic property of flake graphite powder/hindered phenol-nitrile butadiene rubber blends[J]. Acta Materiae Compositae Sinica, 2015,32(5):1480-1486.
[21] 左孔成, 张林, 彭金方, 等. 填料形态对丁腈橡胶杂化阻尼复合材料动态力学性能影响[J]. 功能材料, 2014,45(5):5065-5069.
ZUO Kongcheng, ZHANG Lin, PENG Jinfang, et al. Effect of fillers configuration on dynamic mechanical property of nitrile rubber hybrid damping materials[J]. Journal of Functional Materials, 2014,45(5):5065-5069.
[22] 翁诗甫. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2010: 377-388.
WENG Shifu. Fourier transform infrared spectros-copy [M]. Beijing: Chemical Industry Press, 2010: 377-388.
[1] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[2] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[3] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[4] 付译鋆 安琪 张伟 张瑜 柯惠珍. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018, 39(12): 7-12.
[5] 潘玉婷 李方 沈忱思 陈洪腾 刘艳彪 肖冬雪. 退浆废水中聚乙烯醇的膜蒸馏-超滤二级膜浓缩[J]. 纺织学报, 2018, 39(11): 96-102.
[6] 王宗乾 杨海伟 汤立洋 李长龙. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11): 14-19.
[7] 龙啸云 张琰 葛明桥. 高强度抗老化土工布的制备与性能表征[J]. 纺织学报, 2018, 39(01): 66-70.
[8] 武海良 姚一军 沈艳琴 毛宁涛. 浆料混溶性对共混浆膜力学性能的影响[J]. 纺织学报, 2017, 38(10): 65-69.
[9] 吕丽华 毕吉红 于 翔 钱永芳 赵玉萍. 废弃涤纶织物/氯化聚乙烯复合材料的隔声性能[J]. 纺织学报, 2017, 38(08): 50-54.
[10] 王遥 朱青 胡春艳 王栋 阎克路. 改性聚乙烯醇-乙烯共聚物纳米纤维膜对重金属离子的吸附性能[J]. 纺织学报, 2017, 38(06): 11-16.
[11] 李伟 祝志峰 徐珍珍 徐文正 魏安方 张朝辉. 淀粉浆料用极性增塑剂及其增塑作用的研究进展[J]. 纺织学报, 2017, 38(04): 171-176.
[12] 吴静 郭静 杨利军 张森 宫玉梅. 海藻酸钠/南极磷虾蛋白/聚乙烯醇复合纤维的分子作用及其性能表征[J]. 纺织学报, 2017, 38(02): 7-13.
[13] 张康 荆蓉 程飞 朱谱新. 丙烯酰胺与聚乙烯醇的固相接枝共聚[J]. 纺织学报, 2016, 37(12): 65-70.
[14] 李旭明. He/O2等离子体处理对混合浆膜表面刻蚀的影响[J]. 纺织学报, 2014, 35(8): 54-0.
[15] 王建铨 吴津田 刘鹏清 叶光斗 徐建军. 聚乙烯醇水溶纤维干法纺丝成形模拟[J]. 纺织学报, 2013, 34(2): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!