纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 8-15.doi: 10.13475/j.fzxb.20200806808

• 特约专栏:生物基聚酯和聚酰胺纤维 • 上一篇    下一篇

生物基聚对苯二甲酸丙二醇酯织物的阻燃与三防一步法泡沫整理

李永贺, 瞿凌曦, 徐壁, 蔡再生, 葛凤燕()   

  1. 东华大学 生态纺织教育部重点实验室, 上海 201620
  • 收稿日期:2020-08-17 修回日期:2021-01-15 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 葛凤燕
  • 作者简介:李永贺(1996—),男,硕士生。主要研究方向为纺织品功能整理。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309400)

One-step foam finishing of flame retardancy and three-proof finishing for bio-based polytrimethylene terephthalate fabrics

LI Yonghe, QU Lingxi, XU Bi, CAI Zaisheng, GE Fengyan()   

  1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-08-17 Revised:2021-01-15 Online:2021-04-15 Published:2021-04-20
  • Contact: GE Fengyan

摘要:

为提升生物基聚对苯二甲酸丙二醇酯(PTT)织物的功能性且满足节能减排生态染整需求,采用泡沫整理技术对生物基PTT织物进行阻燃与三防一步法整理。通过响应面实验设计和优化法,分析了阻燃剂和三防整理剂质量浓度、带液率以及焙烘温度等对整理效果的影响,得到最佳整理工艺:阻燃剂和三防整理剂质量浓度分别为390、43 g/L,带液率为42%,141 ℃下焙烘1 min。研究结果表明:在最佳工艺条件下整理的PTT织物具有优异的阻燃性能和良好的三防效果,其阻燃等级达到国标B1标准,水相和油相接触角分别达到145.6°和129.2°;经20次水洗和50次摩擦后织物仍保持良好的阻燃和三防效果。实验研究的泡沫多功能整理方法为生物基纤维材料绿色清洁生产提供了有效途径。

关键词: 生物基聚对苯二甲酸丙二醇酯织物, 阻燃整理, 三防整理, 泡沫整理, 功能纺织品

Abstract:

In order to improve the functionality of bio-based polytrimethylene terephthalate (PTT) fabrics and meet the needs of energy saving and emission reduction for ecological dyeing and finishing, foam finishing technology are used to treat bio-based PTT fabrics for flame-retardancy and three-proof one-step finishing. Using the responsive surface experimental design and optimization method, the effects of the concentration of the flame retardant and the three-proof finishing agent, liquid carrying rate and the baking temperature on the finishing effect were analyzed. The optimal finishing process was as follows: the concentration of flame retardant and three-proof finishing agent are 390 and 43 g/L respectively, the liquid carrying rate is 42%, and baking is performed at 141 ℃ for 1 min. The research results show that the PTT fabrics finished under the optimal technological conditions have excellent flame retardant properties and good three-proof effects. The flame retardant grade reaches the national B1 standard, and the contact angles of the water phase and the oil phase reach 145.6° and 129.2°, respectively. In addition, after 20 washings and 50 rubs, the fabric still maintains good flame retardant and three-proof effects. The experimentally researched foam multifunctional finishing method provides an effective way to improve the green and clean production of bio-based fiber materials.

Key words: bio-based polytrimethylene terephthalate fabric, flame retardant finishing, three-proof finishing, foam finishing, functional textile

中图分类号: 

  • TS156

图1

生物基PTT织物阻燃与三防一步法泡沫整理工艺流程图"

图2

阻燃剂质量浓度对泡沫性能的影响"

图3

阻燃剂质量浓度对整理效果的影响"

图4

三防整理剂质量浓度对泡沫性能的影响"

图5

三防整理剂质量浓度对整理效果的影响"

图6

带液率对整理效果的影响"

图7

焙烘温度对整理效果的影响"

表1

阻燃与三防一步法泡沫整理的响应面因素与水平表"

水平 A
阻燃剂质量
浓度/(g·L-1)
B
三防整理剂质量
浓度/(g·L-1)
C
带液率/
%
D
焙烘
温度/℃
-1 350 35 30 135
0 400 40 40 140
1 450 45 50 145

表2

阻燃与三防一步法泡沫整理的响应面优化结果"

实验号 A B C D LOI值/% 水相接触角/(°)
1 450 45 40 140 27.4 135.6
2 350 35 40 140 27.1 134.1
3 450 40 40 145 27.7 136.1
4 400 40 50 145 27.9 138.1
5 350 40 30 140 27.4 135.6
6 350 40 40 135 27.2 139.7
7 400 35 40 135 28.2 134.6
8 400 45 30 140 27.8 137.1
9 350 40 40 145 27.3 138.1
10 450 40 30 140 27.7 137.6
11 450 40 40 135 28.1 136.0
12 400 40 40 140 28.3 140.1
13 400 40 30 135 28.3 140.1
14 400 35 30 140 27.4 135.4
15 400 35 50 140 27.9 132.8
16 400 40 30 145 27.8 137.6
17 400 40 40 140 28.2 139.6
18 400 40 50 135 27.8 137.6
19 450 40 50 140 27.7 131.2
20 400 45 50 140 26.5 136.9
21 400 40 40 140 28.4 140.8
22 450 35 40 140 27.4 130.7
23 350 45 40 140 26.4 135.5
24 400 45 40 145 27.5 137.1
25 400 40 40 140 28.3 140.1
26 400 45 40 135 27.5 139.1
27 400 35 40 145 27.9 135.1
28 350 40 50 140 26.8 138.1
29 400 40 40 140 28.3 140.1

图8

四因素中两两因素对织物LOI值的响应结果"

图9

四因素中两两因素对织物水相接触角的响应结果"

表3

2种整理织物效果的对比"

试样 损毁长度/
cm
LOI值/
%
水相接触角/
(°)
油相接触角/
(°)
1# 2# 1# 2# 1# 2# 1# 2#
整理试样 10.5 10.8 28.5 28.4 145.6 142.6 129.2 124.8
水洗20次 11.9 12.1 27.9 27.5 142.7 141.9 125.8 123.6
摩擦50次 11.1 11.7 27.5 27.6 144.5 142.0 128.0 123.4

表4

2种织物整理均匀性比较"

织物编号 水相接触角均方差/(°) 油相接触角均方差/(°)
1# 3.58 4.53
2# 4.02 4.62
[1] 李现顺, 甘胜华, 汪少朋. 一种新型聚酯材料:PTT的合成及应用[J]. 聚酯工业, 2014,27(2):7-12.
LI Xianshun, GAN Shenghua, WANG Shaopeng. A new polyester material: synjournal and applications of PTT[J]. Polyester Industry, 2014,27(2):7-12.
[2] 马艳丽, 王秀华, 万继宪. 阻燃PTT共聚酯的制备及性能研究[J]. 合成纤维, 2010,39(10):20-23.
MA Yanli, WANG Xiuhua, WAN Jixian. Studies on preparation and properties of flame-retardant poly (triethylene terephthalate) copolymer[J]. Synthetic Fiber in China, 2010,39(10):20-23.
[3] KURIAN J V. A new polymer platform for the future-sorona from corn derived 1,3-propanediol[J]. Journal of Polymers and the Environment, 2005,13(2):159-167.
[4] LIU Hongjuan, XU Yunzhen, ZHENG Zongming, et al. 1,3-propanediol and its copolymers: research, development and industrialization[J]. Biotechnol Journal, 2010,5(11):1137-1148.
[5] 董奎勇, 杨婷婷, 王学利, 等. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020,41(1):174-183.
DONG Kuiyong, YANG Tingting, WANG Xueli, et al. Research and development progress of bio-based polyester and polyamide fibers[J]. Journal of Textile Research, 2020,41(1):174-183.
[6] 王学利, 彭治汉, 江建明, 等. 环状膦酸酯阻燃PTT纤维及其性能研究[J]. 合成纤维工业, 2007,30(1):25-27.
WANG Xueli, PENG Zhihan, JIANG Jianming, et al. Study on cyclic phosphonic acid flame retardant PTT fiber and its properties[J]. China Synthetic Fiber Industry, 2007,30(1):25-27.
[7] 雷开强. 镍/聚苯胺/PTT电磁屏蔽织物的制备及其性能[D]. 上海: 东华大学, 2015: 1-5.
LEI Kaiqiang. Preparation and properties of Ni/PANI/PTT electromagnetic shielding fabric[D]. Shanghai: Donghua University, 2015: 1-5.
[8] 沈金科. 抗菌PTT纤维的制备及性能研究[D]. 杭州:浙江理工大学, 2014: 51-53.
SHEN Jinke. Preparation and properties studies of antibacterial poly (trimethylene terephthalate) filament[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 51-53.
[9] GE Fangqing, ZHANG Jinju, LIU Jingyan, et al. A novel crease-resistant and hydrophobic dual-function foam coating for silk fabric by the one-step method[J]. Textile Research Journal, 2020,90(13/14):1495-1506.
[10] 李珂, 张健飞, 巩继贤, 等. 涤棉织物泡沫拒水拒油整理[J]. 纺织学报, 2014,35(4):94-99.
LI Ke, ZHANG Jianfei, GONG Jixian, et al. Water and oil repellent finishing of polyester cotton by foam technology[J]. Journal of Textile Research, 2014,35(4):94-99.
[11] 陈龙富, 罗立善, 罗竹青, 等. 基于响应面实验设计的电泳工艺研究[J]. 湖南工业大学学报, 2019,33(4):59-65.
CHEN Longfu, LUO Lishan, LUO Zhuqing, et al. Study on electrophoresis technology based on response surface analysis design[J]. Journal of Hunan University of Technology, 2019,33(4):59-65.
[12] 赵宝宝, 钱晓明, 钱幺, 等. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018,39(7):95-99.
ZHAO Baobao, QIAN Xiaoming, QIAN Yao, et al. Preparation of waterborne polyurethane coating by mechanical foaming based on response surface methodology[J]. Journal of Textile Research, 2018,39(7):95-99.
[13] 吴龙. 应用响应面优化法的文胸泡沫模杯模压厚度变化趋势研究[J]. 纺织学报, 2017,38(11):102-109.
WU Long. Thickness change trend under process parameters in foam cup molding using Box-Behnken design method[J]. Journal of Textile Research, 2017,38(11):102-109.
[14] 苗苗, 王晓旭, 王迎, 等. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019,40(11):125-130.
MIAO Miao, WANG Xiaoxu, WANG Ying, et al. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric[J]. Journal of Textile Research, 2019,40(11):125-130.
[15] 谭富耀, 盛赵越, 胡婷, 等. 超声波辅助提取麻城福白菊总黄酮工艺优化及其抗氧化活性分析[J]. 食品工业科技, 2020,41(14):154-159.
TAN Fuyao, SHENG Zhaoyue, HU Ting, et al. Ultrasonic-assisted extraction optimization of total flavonoids from macheng chrysanthemum morifolium and its antioxidant activity[J]. Science and Technology of Food Industry, 2020,41(14):154-159.
[16] 姚众, 张贵云, 张丽萍, 等. 响应面法优化超临界二氧化碳萃取苦参碱工艺技术[J]. 山西农业科学, 2020,48(7):1135-1139.
YAO Zhong, ZHANG Guiyun, ZHANG Liping, et al. Optimization of extraction process for matrine with supercritical carbon dioxide by response surface methodology[J]. Journal of Shanxi Agricultural Sciences, 2020,48(7):1135-1139.
[1] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
[2] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[3] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[4] 马亚男, 沈军炎, 骆晓蕾, 张聪, 尚小磊, 刘琳, KRUCINSKA Izabella, 姚菊明. 高效无卤阻燃棉织物的制备及其结构与性能[J]. 纺织学报, 2021, 42(03): 122-129.
[5] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[6] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[7] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[8] 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128.
[9] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[10] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[11] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[12] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[13] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[14] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
[15] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!