纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 132-138.doi: 10.13475/j.fzxb.20200203107

• 染整与化学品 • 上一篇    下一篇

生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性

王华清1, 闫红强2()   

  1. 1.浙江纺织服装职业技术学院, 浙江 宁波 315211
    2.浙大宁波理工学院 高分子材料与工程研究所, 浙江 宁波 315100
  • 收稿日期:2020-02-17 修回日期:2021-01-18 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 闫红强
  • 作者简介:王华清(1974—),女,教授,硕士。主要研究方向为染整新技术的开发与应用。
  • 基金资助:
    国家自然科学基金资助项目(51991355);浙江省自然科学基金项目(LY19E030004);宁波市自然科学基金项目(2019A610144)

Construction of bio-based three-component self-assembled coating for flame retardancy of ramie fabrics

WANG Huaqing1, YAN Hongqiang2()   

  1. 1. Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang 315211, China
    2. Institute of Polymer Material and Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China
  • Received:2020-02-17 Revised:2021-01-18 Online:2021-04-15 Published:2021-04-20
  • Contact: YAN Hongqiang

摘要:

为解决苎麻纤维易燃烧和使其增强复合材料阻燃性降低的问题,采用层层自组装方法,以生物质来源的海藻酸钠(SA)、聚双酚酸苯基磷酸酯(poly(DPA-PDCP))为聚阴离子电解质,聚乙烯亚胺(PEI)为聚阳离子电解质,在苎麻织物表面构筑了(SA/PEI/poly(DPA-PDCP)/PEI)n三组分阻燃涂层,借助傅里叶红外光谱仪、扫描电子显微镜、热失重分析仪、微型量热仪、垂直燃烧测试仪等对其形貌、热稳定性和阻燃性能进行表征。结果表明:苎麻织物表面构筑了一个多层、厚且致密的(SA/PEI/poly(DPA-PDCP)/PEI)n阻燃涂层,该阻燃涂层可明显降低苎麻织物的热分解速率,燃烧时在其表面形成一层厚且致密的膨胀型阻燃炭层,可有效地隔热隔氧,提高苎麻织物的热稳定性和成炭能力,并赋予其优异的阻燃性能,解决苎麻增强复合材料阻燃性能差的问题。

关键词: 苎麻织物, 生物基阻燃剂, 层层自组装, 阻燃性能, 功能织物

Abstract:

In order to solve the flammability of ramie fibers and their reinforced composites, sodium alginate (SA) and poly (diphenolic acid-phenyl phosphate) ((poly(DPA-PDCP)) from biomass were used as the polyanion electrolyte and polyethyleneimine (PEI) as the polycation electrolyte, three-component (SA/PEI/poly(DPA-PDCP)/PEI)n flame retardant coating was constructed on the surface of ramie fabrics by layer-by-layer assembly technique. The morphology, thermal stability and flame retardancy of the coating and hence the coated fabrics were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer, microscale combustion calorimetry, vertical combustion tester. The experimental results show that a multi-layered, thick and dense (SA/PEI/poly(DPA-PDCP)/PEI)n flame retardant coating is successfully constructed on the surface of ramie fabrics. This flame retardant coating reduces significantly the thermal decomposition rate of ramie fabrics, forming a thick and dense intumescent flame retardant carbon layer on its surface, which insulates effectively the heat and oxygen, improves its thermal stability and carbon forming ability, and gives the ramie fabrics excellent flame retardancy. This research demonstrates a solution to the problem of poor flame retardancy of ramie reinforced composites.

Key words: ramie fabric, bio-based flame retardant, layer-by-layer assembly, flame retardancy, functional fabric

中图分类号: 

  • TB324

图1

苎麻织物表面SA/PEI/poly(DPA-PDCP)三组分阻燃涂层的构建示意图"

表1

未处理和涂层处理苎麻织物的质量增加率"

样品编号 样品名称 质量增加率/%
n-0 未处理的苎麻织物
S-1 (SA/PEI/poly(DPA-PDCP)/PEI)1 3.10
P-1 (poly(DPA-PDCP)/PEI/SA/PEI)1 2.03
S-5 (SA/PEI/poly(DPA-PDCP)/PEI)5 10.85
P-5 (poly(DPA-PDCP)/PEI/SA/PEI)5 8.68
S-10 (SA/PEI/poly(DPA-PDCP)/PEI)10 20.56
P-10 (poly(DPA-PDCP)/PEI/SA/PEI)10 18.46

图2

未处理和涂层处理苎麻织物的ATR-FT-IR谱图"

图3

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物的扫描电镜照片"

图4

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物氮气气氛下的TG和DTG曲线"

图5

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物空气气氛下的TG和DTG曲线"

表2

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物的热质量损失数据"

测试气氛 样品编号 T5%/℃ Tmax1/℃ 第1分解峰峰值/
(%·min-1)
Tmax2/℃ 第2分解峰峰值/
(%·min-1)
600 ℃时的
残炭率/%
氮气 n-0 339.0 378.0 -41.87 16.8
S-1 331.0 367.0 -42.64 18.9
S-5 300.0 357.0 -23.49 27.1
S-10 240.4 350.4 -23.86 27.1
空气 n-0 331.3 353.3 -78.96 483.3 -5.76 3.7
S-1 323.9 350.3 -59.17 501.8 -5.37 2.7
S-5 305.0 346.0 -24.88 527.0 -6.42 5.0
S-10 249.8 344.0 -25.34 531.7 -5.67 10.9

图6

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物的MCC曲线"

表3

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物的MCC和LOI值测试结果"

样品编号 热释放焓/(J·g-1·K-1) 总热释放量/(kJ·g-1) 热释放速率峰值/(W·g-1) 热释放速率峰值温度/℃ LOI值/%
n-0 230 9.2 237.5 381.3 18.4
S-1 212 8.3 219.4 372.8 20.3
S-5 158 6.0 165.9 358.5 23.2
S-10 142 4.8 149.5 352.0 26.3

图7

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物的垂直燃烧照片"

图8

未处理和经(SA/PEI/poly(DPA-PDCP)/PEI)n涂层处理苎麻织物垂直燃烧后残炭的扫描电镜照片"

[1] WANG C H, REN Z L, SHAN L, et al. Effect of ramie fabric chemical treatments on the physical properties of thermoset polylactic acid (PLA) composites[J]. Aerospace, 2018,5(3):93.
[2] LEJA K, LEWANDOWICZ G. Polymer biodegradation and biodegradable polymers: a review[J]. Polish Journal of Environmental Studies, 2010,19(2):255-266.
[3] SINGH A, VARGHESE L M, BATTAN B, et al. Eco-friendly scouring of ramie fibers using crude xylano-pectinolytic enzymes for textile purpose[J]. Environmental Science and Pollution Research, 2020,27:6701-6710.
doi: 10.1007/s11356-019-07424-9 pmid: 31873900
[4] GASSAN J, BLEDZKI A K. Effect of cyclic moisture absorption desorption on the mechanical properties of silanized jute-epoxy composites[J]. Polymer Composites, 1999,20(4):604-611.
[5] GU Y Z, TAN X L, YANG Z J. Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding[J]. Materials & Design, 2014,56:852-861.
[6] FILHO F D C G, LUZ F S D, NASCIMENTO L F C, et al. Mechanical properties of boehmeria nivea natural fabric reinforced epoxy matrix composite prepared by vacuum-assisted resin infusion molding[J]. Polymers, 2020,12:1311.
[7] YU T, JIANG N, LI Y. Study on short ramie fiber/ poly(lactic acid) composites compatibilized by maleic anhydride[J]. Composites Part A: Applied Science and Manufacturing, 2014,64:139-146.
[8] WANG H G, XIAN G J, LI H, et al. Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion[J]. Fibers and Polymers, 2014,15(5):1029-1034.
[9] 鲁小城, 闫红强, 王华清, 等. 阻燃苎麻/酚醛树脂复合材料的制备及性能[J]. 复合材料学报, 2011,28(3):1-5.
LU Xiaocheng, YAN Hongqiang, WANG Huaqing, et al. Preparation and properties of flame retarded ramie/phenolic resin composites[J]. Acta Materiae Compositae Sinica, 2011,28(3):1-5.
[10] 陈志军, 刘兴乔, 柳浩, 等. 苎麻织物紫外光接枝阻燃改性研究[J]. 纺织学报, 2014,35(4):79-83.
CHEN Zhijun, LIU Xingqiao, LIU Hao, et al. Study on flame retardant modification of ramie fabrics by ultraviolet grafting[J]. Journal of Textile Research, 2014,35(4):79-83.
[11] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019,40(12):79-85.
SUN Yufa, ZHOU Xiangdong. Synjournal and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics[J]. Journal of Textile Research, 2019,40(12):79-85.
[12] 任元林, 张悦, 曾倩, 等. 织物阻燃涂层新工艺的研究进展[J]. 纺织学报, 2017,38(9):168-173.
REN Yuanlin, ZHANG Yue, ZENG Qian, et al. Research progress of new processes of flame retardant fabrics coating[J]. Journal of Textile Research, 2017,38(9):168-173.
[13] 刘越, 朱平, 马佳娜. 纯海藻酸盐纤维的性能[J]. 纺织学报, 2009,30(8):13-16.
LIU Yue, ZHU Ping, MA Jiana. Properties of alginate fiber[J]. Journal of Textile Research, 2009,30(8):13-16.
[14] YAN H Q, LI N N, FANG Z P, et al. Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flame retardant ramie fabrics[J]. Journal of Applied Polymer Science, 2017,134(20):44795.
[15] 刘晋旭, 刘鹏清. 织物阻燃表面处理技术研究进展[J]. 纺织学报, 2020,41(10):178-187.
LIU Jinxu, LIU Pengqing. Advances in flame-retardant surface treatments for textiles[J]. Journal of Textile Research, 2020,41(10):178-187.
[16] CAROSIO F, ALONGI J, MALUCELLI G. Layer-by-layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends[J]. Carbohydrate Polymers, 2012,88(4):1460-1469.
[17] ZHANG T, YAN H Q, PENG M, et al. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate[J]. Nanoscale, 2013,5:3013-3021.
doi: 10.1039/c3nr34020a pmid: 23459988
[18] 赵黎, 闫红强, 方征平. PEI/PAA/APP三组分膨胀组装涂层阻燃改性苎麻织物[J]. 高分子学报, 2017 (6):982-989.
ZHAO Li, YAN Hongqiang, FANG Zhengping. Flame retardancy of ramie fabrics treated by PEI/PAA/APP tri-component layer-by-layer assembly technique[J]. Acta Polymerica Sinica, 2017 (6):982-989.
[19] LAUFER G, KIRKLAND C, MORGAN A B, et al. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton[J]. Biomacromolecules, 2012,13(9):2843-2848.
[20] 张宪胜, 王然, 王锐, 等. 基于锥形量热仪的纤维集合体燃烧性能测试方法[J]. 纺织学报, 2017,38(2):47-52.
ZHANG Xiansheng, WANG Ran, WANG Rui, et al. Testing method of combustion behavior of loose fibrous assembly by cone calorimeter[J]. Journal of Textile Research, 2017,38(2):47-52.
[21] NGUYEN T M, CHANG S C, CONDON B, et al. Fire self-extinguishing cotton fabric: development of piperazine derivatives containing phosphorous-sulfur-nitrogen and their flame retardant and thermal behaviors[J]. Materials Sciences and Applications, 2014,5(11):789-802.
[1] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[2] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[3] 刘晋旭, 刘鹏清. 织物阻燃表面处理技术研究进展[J]. 纺织学报, 2020, 41(10): 178-187.
[4] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[5] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[6] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
[7] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[8] 范静静, 王鸿博, 傅佳佳, 王文聪. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019, 40(04): 90-95.
[9] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[10] 李强林, 黄方千, 肖秀婵, 邱诚, 吴菊珍. 新型无卤聚合物阻燃剂的研究进展[J]. 纺织学报, 2019, 40(04): 177-184.
[11] 刘菲, 李秋瑾, 巩继贤, 李政, 刘秀明, 张健飞. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019, 40(02): 114-118.
[12] 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107.
[13] 刘婷 张安莹 王锐 董振峰 朱志国 王照颖. 季戊四醇磷酸酯/二乙基次磷酸锌协同阻燃聚酰胺6的制备及其性能 [J]. 纺织学报, 2018, 39(09): 8-14.
[14] 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111.
[15] 邓继勇 柳芊 董新理 汪南方. 新型氮-磷阻燃剂制备及其对棉织物的阻燃性能[J]. 纺织学报, 2017, 38(11): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!