纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 107-113.doi: 10.13475/j.fzxb.20200701307

• 染整与化学品 • 上一篇    下一篇

Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能

蒋文雯1,2, 莫慧琳1,2, 樊婷玥1,2, 赵紫瑶1,2, 任煜1,2(), 王春霞1,3, 张伟1,2, 臧传锋1,2   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
    3.盐城工学院 纺织服装学院, 江苏 盐城 224051
  • 收稿日期:2020-07-06 修回日期:2021-01-07 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 任煜
  • 作者简介:蒋文雯(1996—),女,硕士。主要研究方向为光催化纤维材料的开发。
  • 基金资助:
    国家自然科学基金项目(51703098);江苏省产学研合作项目(2018204);内蒙古自治区重大科技项目(zdzx2018060);国家级大学生创新创业训练计划项目(201910304058Z)

Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue

JIANG Wenwen1,2, MO Huilin1,2, FAN Tingyue1,2, ZHAO Ziyao1,2, REN Yu1,2(), WANG Chunxia1,3, ZHANG Wei1,2, ZANG Chuanfeng1,2   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong, Jiangsu 226019, China
    3. College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
  • Received:2020-07-06 Revised:2021-01-07 Online:2021-04-15 Published:2021-04-20
  • Contact: REN Yu

摘要:

为制备具有稳定性能的可见光催化剂,采用原位沉积法制得Ag6Si2O7/TiO2复合可见光催化剂。对光催化剂的表面形貌、结晶结构、化学元素组成和荧光光谱进行分析。在可见光照射下,以亚甲基蓝为有机污染物模型,探讨了TiO2质量分数对复合光催化剂光催化降解效率的影响。结果表明:Ag6Si2O7/TiO2复合光催化剂中,Ag6Si2O7均匀地包覆在TiO2表面,二者以核壳结构形式紧密结合,且Ag、Si和Ti是以Ag+、Si4+和Ti4+存在;与纯Ag6Si2O7和纯TiO2相比,Ag6Si2O7/TiO2光催化剂具有更高的可见光光催化活性;当TiO2质量分数为20%时,对亚甲基蓝降解效果最佳,在20 min内降解率达到98.6%。这种新型高效复合可见光催化剂可用于处理印染废水,具有广阔的应用前景。

关键词: TiO2, 光催化剂, 染料降解, 亚甲基蓝, 印染废水处理

Abstract:

In order to prepare visible light catalyst with stable performance, a novel highly efficient Ag6Si2O7/TiO2 photocatalyst was prepared by an in-situ deposition method.The surface morphology, crystalline structure, chemical elemental composition and fluorescence spectrum of the photocatalyst were analyzed. The photocatalytic activity of the composite catalyst with different concentration of TiO2 were tested by degrading methylene blue (MB) under simulated visible light at room temperature. The results show that Ag6Si2O7 are coated on TiO2 uniformly, Ag6Si2O7 and TiO2 are tightly bonded in the form of core-shell structure, and Ag+, Si4+and Ti4+ exist in composite catalyst. The results of photocatalytic degradation of MB show that the Ag6Si2O7/TiO2 photocatalyst exhibits higher photocatalytic activity under visible light than Ag6Si2O7 and TiO2 used separately. When the mass fraction of TiO2 is 20%, the photocatalyst possesses the highest photocatalytic activity. The degradation efficiency for MB is up to 98.6% after irradiating in simulated solar for 20 min. The novel high-efficiency Ag6Si2O7/TiO2 photocatalyst has a broad application prospect in treatment of printing and dyeing wastewater.

Key words: TiO2, photocatalyst, dye degradation, methylene blue, printing and dyeing wastewater treatment

中图分类号: 

  • O643.36

图1

Ag6Si2O7/TiO2的制备过程"

图2

光催化剂的扫描电镜照片"

图3

光催化剂的X射线衍射图"

图4

Ag6Si2O7/TiO2的XPS图谱"

图5

光催化剂的红外光谱图"

图6

光催化剂的荧光发射光谱图"

图7

模拟可见光下不同光催化剂降解亚甲基蓝的降解曲线"

表1

不同捕获剂下Ag6Si2O7/TiO2 对亚甲基蓝的降解效率"

捕获剂 空白样 EDTA-2Na IPA BQ
降解率/% 98.6 36.8 91.6 76.3

图8

Ag6Si2O7/TiO2复合光催化剂光催化机制"

[1] 李冰蕊, 潘家豪, 王挺, 等. 用吸附相反应技术制备弱光响应的铈掺杂TiO2复合光催化剂[J]. 纺织学报, 2018,39(5):67-73.
LI Bingrui, PAN Jiahao, WANG Ting, et al. Preparation of weak-light-driven TiO2 composite photocatalyst by adsorption phase synjournal[J]. Journal of Textile Research, 2018,39(5):67-73.
[2] 高大伟, 王春霞, 林洪芹, 等. 二氧化钛纳米管的制备及其光催化性能[J]. 纺织学报, 2017,38(4):23-36.
GAO Dawei, WANG Chunxia, LIN Hongqin, et al. Preparation and photocatalytic property of TiO2 nanotubes[J]. Journal of Textile Research, 2017,38(4):23-36.
[3] MASTEN S J, DAVIES S. The use of ozonation to degrade organic contaminants in wastewaters[J]. Environmental Science & Technology, 1994,28:180-185.
[4] SLOKAR M Y, MARECHAL A M L. Methods of decoloration of textile wastewaters[J]. Dyes & Pigments, 1998,37:335-356.
[5] YANG K, XINGK B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application[J]. Chemical Reviews, 2010,41:1855-1861.
[6] ZHAO Y X, FENG C P, WANG Q H, et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor[J]. Journal of Hazardous Materials, 2011,192:1033-1039.
pmid: 21724327
[7] MAOX H, YUAN S H, FALLAHPOUR N, et al. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater[J]. Environmental Science & Technology, 2012,46:12003-12011.
doi: 10.1021/es301711a pmid: 23067023
[8] 盛宇, 徐慧丽, 孟云, 等. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外织物[J]. 纺织学报, 2019,40(7):90-96.
SHENG Yu, XU Huili, MENG Yun, et al. Preparation of progsuperhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels[J]. Journal of Textile Research, 2019,40(7):90-96.
[9] SHAROTRI N, SHARMA D, SUD D. Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants[J]. Journal of Materials Research and Technology, 2019,781:1-14.
[10] 蓝舟, 瞿建刚, 王春梅, 等. 纤维基钒酸铋的制备及其光催化性能[J]. 纺织学报, 2018,39(6):89-95.
LAN Zhou, QU Jiangang, WANG Chunmei, et al. Preparation and photocatalytic properties of BiVO4 loaded fiber[J]. Journal of Textile Research, 2018,39(6):89-95.
[11] 周惠敏, 牛潇, 李志勇, 等. 前驱体比例对SnO2/TiO2纳米纤维晶型及光催化性能的影响[J]. 纺织学报, 2016,37(5):6-10.
ZHOU Huimin, NIU Xiao, LI Zhiyong, et al. Influence of precursors ratio on crystalline and photocatalytic performance of SnO2/TiO2 nanofibers[J]. Journal of Textile Research, 2016,37(5):6-10.
[12] 曾杰生, 王瑞彬, 何蕾. TiO2光催化剂改性的研究进程[J]. 化工新型材料, 2018,46(3):27-33.
ZENG Jiesheng, WANG Ruibin, HE Lei. Research progress on modification of TiO2 photocatalyst[J]. New Chemical Materials, 2018,46(3):27-33.
[13] KHAN M A M, RAHUL S, SUSHIL K, et al. Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue[J]. Optics & Laser Technology, 2019,118:170-178.
[14] LI W, TIAN Y, LI H, et al. Novel BiOCl/TiO2 hierarchical composites: synjournal, characterization and application on photocatalysis[J]. Applied Catalysis A: General, 2016,516:81-89.
[15] 王永友, 陈前林. 硅酸银@镁铝水滑石复合材料制备及光催化性能研究[J]. 无机盐工业, 2017,49(12):79-82.
WANG Yongyou, CHEN Qianlin. Study on preparation and photocatalytic properties of silicate silver@hydrotalcite composite material[J]. Inorganic Chemicals Industry, 2017,49(12):79-82.
[16] HU Y G, ZHENG H, XU T Z, et al. Highly efficient Ag6Si2O7/WO3 photocatalyst based on heterojunction with enhanced visible light photocatalytic activities[J]. RSC Advances, 2016,6:103289-103295.
[17] LOU Z Z, HUANG B B, WANG Z Y, et al. Ag6Si2O7: a silicate photocatalyst for the visible region[J]. Cheminform, 2015,45:3873-3875.
[18] QIN J B, CHEN N, FENG C P, et al. Fabrication of a narrow-band-gap Ag6Si2O7/BiOBr composite with high stability and enhanced visible-light photocatalytic activity[J]. Catalysis Letters, 2018,148:2777-2788.
[19] QIN J B, CHEN N, FENG C P, et al. Fabrication of a novel p-n heterojunction BiOCl/Ag6Si2O7 nanocomposite as a highly efficient and stable visible light driven photocatalyst[J]. Catalysis Letters, 2018,149:891-903.
[20] 田圣男, 赵健, 陈玲玲, 等. 银/二氧化钛可见光自清洁织物的制备及其性能[J]. 纺织学报, 2018,39(12):89-94.
TIAN Shengnan, ZHAO Jian, CHEN Lingling, et al. Preparation and properties of self-cleaning fabrics based on Ag/TiO2 photocatalysis[J]. Journal of Textile Research, 2018,39(12):89-94.
[21] LIU Zhaowei, TANG Yufei, ZHAO Kang, et al. Self-assembly of positively charged SiO2/Y2O3 composite nanofiber membranes with plum-flower-like structures for the removal of water contaminants[J]. Applied Surface Science, 2019,489:717-724.
[22] 曹俊, 申兴丛, 裘鹏飞, 等. 溶胶-凝胶法制备的钛溶胶形态及其光催化性能[J]. 纺织学报, 2014,35(5):7-12.
CAO Jun, SHEN Xingcong, QIU Pengfei, et al. Morphology and photocatalytic performance of titanium sol prepared by sol-gel method[J]. Journal of Textile Research, 2014,35(5):7-12.
[23] 郭金菊. Ag6Si2O7/蒙脱石复合光催化剂的制备及其光催化降解有机污染物的研究[D]. 武汉:武汉理工大学, 2015: 1-22.
GUO Jinju. Synthesis of Ag6Si2O7/MMT photocatalysts and their performance in photocatalytic degradation of organic pollutants[D]. Wuhan: Wuhan University of Technology, 2015: 1-22.
[24] XIAO G C, WANG X C, LI D Z, et al. In VO4-sensitized TiO2 photocatalysts for efficient air purification with visible light[J]. Journal of Photochemistry & Photobiology A Chemistry, 2018,193:213-221.
[25] CAO J, LUO B D, LIN H L, et al. Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange[J]. Journal of Hazardous Materials, 2012,217:107-115.
doi: 10.1016/j.jhazmat.2012.03.002 pmid: 22464754
[26] GAO P, SUN D D, NG W G. Multifunctional nanostructured membrane for clean water reclamation from wastewater with various pH conditions[J]. RSC Advances, 2013,3:15202.
[27] 张义安, 狄剑锋. 光催化剂负载酰肼基活性炭除甲醛材料的制备[J]. 纺织学报, 2019,40(3):109-124.
ZHANG Yian, DI Jianfeng. Preparation of photocatalyst loaded activated carbon grafted with polyhydrazide for removing formaldehyde[J]. Journal of Textile Research, 2019,40(3):109-124.
[28] GE M Z, LI S H, HUANG J Y, et al. TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photo-catalytic applica-tion[J]. Journal of Materials Chemistry A, 2015,3:3491-3499.
[29] 周兴华, 段萍, 罗玉萍, 等. 镧掺杂纳米二氧化钛光催化剂的制备及性能研究[J]. 材料导报, 2015,29(25):1-7.
ZHOU Xinghua, DUAN Ping, LUO Yuping, et al. Study on preparation and properties of La-TiO2 photocatalyst[J]. Materials Review, 2015,29(25):1-7.
[30] LIU J, WU W, TIAN Q Y, et al. Anchoring of Ag6Si2O7 nanoparticles on α-Fe2O3 short nanotubes as a Z-scheme photocatalyst for improving their photocatalytic performances[J]. Dalton Transactions, 2016,45:12745.
doi: 10.1039/c6dt02499h pmid: 27461821
[31] MA G, HISATOMI T, DOMEN K. Semiconductors for photocatalytic and photoelectrochemical solar water splitting[J]. Cheminform, 2014,43:7520-7535.
[32] ZHOU P, YU J, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials, 2014,26:4920-4935.
doi: 10.1002/adma.201400288 pmid: 24888530
[1] 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134.
[2] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[3] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[4] 王森, 陈英. 纳米TiO2稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[5] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[6] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/氧化石墨烯纤维的制备及其力学性能和吸附性能[J]. 纺织学报, 2020, 41(01): 15-20.
[7] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[8] 崔桂新, 董永春, 王鹏. 羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能[J]. 纺织学报, 2019, 40(12): 68-73.
[9] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[10] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[11] 郭东艳, 徐乃库, 肖长发. 内涂覆锰氧化物聚(甲基)丙烯酸酯中空纤维制备及其对亚甲基蓝的脱色性能[J]. 纺织学报, 2019, 40(10): 26-32.
[12] 施小平, 李瑶, 潘家豪, 王挺, 吴礼光. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019, 40(10): 105-112.
[13] 高晶, 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
[14] 盛宇, 徐丽慧, 孟云, 沈勇, 王黎明, 潘虹. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(07): 90-96.
[15] 孙辉, 张恒源, 咸玉龙, 周传凯, 于斌. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(04): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!