纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 127-131.doi: 10.13475/j.fzxb.20200401905

• 染整与化学品 • 上一篇    下一篇

自修复双层微胶囊的制备及其在玄武岩织物上的应用

刘淑强1,2(), 靖逸凡1, 杨雅茹3, 吴改红1, 余娟娟1, 王凯文1, 李惠敏1, 李甫1,2, 张曼1,2   

  1. 1.太原理工大学 轻纺工程学院, 山西 太原 030024
    2.太原理工大学 新型功能纺织品实验室,山西 晋中 030600
    3.嘉兴学院 材料与纺织工程学院, 浙江 嘉兴 314001
  • 收稿日期:2020-04-07 修回日期:2021-02-06 出版日期:2021-04-15 发布日期:2021-04-20
  • 作者简介:刘淑强(1981—),男,副教授,博士。主要研究方向为新型功能纺织品。E-mail: liushuqiang8866@126.com
  • 基金资助:
    山西省高等学校科技成果转化培育项目(2020CG014);山西省研究生教育创新项目(2020SY466)

Preparation of self-healing double-layer microcapsules and its application for basalt fabrics

LIU Shuqiang1,2(), JING Yifan1, YANG Yaru3, WU Gaihong1, YU Juanjuan1, WANG Kaiwen1, LI Huimin1, LI Fu1,2, ZHANG Man1,2   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    2. Functional and Smart Textile Laboratory, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
    3. College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2020-04-07 Revised:2021-02-06 Online:2021-04-15 Published:2021-04-20

摘要:

为提高玄武岩织物的抗折性能,首先用原位聚合法制备单层微胶囊,囊壁为三聚氰胺-尿素-甲醛共聚物(MUF),囊芯为环氧树脂;然后将固化剂二氨基二苯砜吸附在单层微胶囊表面,以MUF再次包覆制成双层微胶囊;最后将双层微胶囊涂覆到玄武岩织物表面。测试了微胶囊的微观形貌和化学结构,分析了微胶囊自修复玄武岩织物的自修复性能。结果表明:制备的微胶囊结构致密、表面光滑;当玄武岩纤维受到破坏时,微胶囊破裂流出修复剂和固化剂通过聚合反应生成网络大分子修复裂纹;修复7 d后玄武岩织物的最大断裂强力和折皱回复性能可基本恢复,延伸性能有很大改善,抗折性能得到有效提高。

关键词: 玄武岩织物, 微胶囊, 水性聚氨酯, 原位聚合法, 自修复, 抗折性能

Abstract:

In order to improve the bending resistance of basalt fabric, a monolayer microcapsules were prepared by in-situ polymerization.The wall of the monolayer microcapsule was melamine urea formaldehyde copolymer (MUF), and the core was epoxy resin. Then the curing agent diaminodiphenyl sulfone was adsorbed on the surface of the monolayer microcapsules, and then coated with MUF to make double microcapsules.Finally, the double microcapsules were coated on the surface of basalt fabric. The micromorphology and chemical structure of the microcapsules were tested, and the self-healing properties of the microcapsule self-healing basalt fabric were analyzed.The results show that the prepared microcapsules has a compact structure and a smooth surface. When the basalt fiber was damaged, the microcapsules releases the repair agent and curing agent to generate a network of macromolecules for repairing the cracks.After 7 d repair, the maximum breaking strength and the wrinkle recovery performance of the basalt fabric is basically restored, with the elongation and the flexural performance effectively improved.

Key words: basalt fabric, microcapsule, water-based polyurethane, in-situ polymerization, smart self-healing, bending resistance

中图分类号: 

  • TB332

图1

单层微胶囊的扫描电镜与光学显微镜照片"

图2

单层微胶囊的红外谱图"

图3

双层微胶囊的SEM与光学显微镜照片"

图4

双层微胶囊与固化剂DDS的红外光谱图"

图5

微胶囊自修复玄武岩织物的拉伸曲线"

图6

织物拉伸断裂后的 SEM 照片"

表1

不同修复时间下玄武岩织物的折皱回复角"

试样名称 初始折皱
回复角/(°)
不同修复时间下的折皱回复角/(°)
0 d 1 d 3 d 7 d
未处理玄武岩织物 147.45 110.89 119.45 113.57 115.23
微胶囊自修复玄武岩织物 166.02 144.36 152.80 155.34 160.34
[1] 徐艳华, 袁新林. 玄武岩纤维机织针织复合织物增强复合材料的弯曲性能[J]. 纺织学报, 2013,34(1):42-45.
XU Yanhua, YUAN Xinlin. Flexural properties of basalt fiber woven knitted composite fabric reinforced composites[J]. Journal of Textile Research, 2013,34(1):42-45.
[2] 张晓青, 冯静, 王仁舒, 等. 玄武岩纤维的研究进展及应用[J]. 山东化工, 2019,48(4):46-47.
ZHANG Xiaoqing, FENG Jing, WANG Renshu, et al. Research progress and application of basalt fiber[J]. Shandong Chemical Industry, 2019,48(4):46-47.
[3] 吴佳林. 连续玄武岩纤维的研究进展及应用[J]. 化纤与纺织技术, 2012,41(3):38-41.
WU Jialin. Research progress and application of continuous basalt fibers[J]. Chemical Fibers and Textile Technology, 2012,41(3):38-41.
[4] 苟万, 周绿山, 邓远方, 等. 玄武岩纤维在建筑材料领域的应用研究进展[J]. 当代化工, 2019,48(5):1083-1086.
GOU Wan, ZHOU Lushan, DENG Yuanfang, et al. Research progress of basalt fiber application in the field of building materials[J]. Contemporary Chemical Industry, 2019,48(5):1083-1086.
[5] ZHAO H, GUAN B W, XIONG R, et al. Investigation of the performance of basalt fiber reinforced asphalt mixture[J]. Applied Sciences, 2020,10(5):1561-1568.
[6] GALITSEYSKII K B, TIMANTSEV Y A, MATSEEVICH T A, et al. Preparation and investigation of mechanical properties of composites based on secondary polypropylene and modified basalt fibers[J]. Materials Science Forum, 2019,974:350-355.
[7] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020,37(5):1-14.
WU Zhishen, WANG Xin, SHI Jianzhe. Performance improvement of basalt fiber composite material and its new structure[J]. Engineering Mechanics, 2020,37(5):1-14.
[8] 张勇, 樊伟杰, 张泰峰, 等. 涂层自修复技术研究进展[J]. 中国腐蚀与防护学报, 2019,39(4):299-305.
ZHANG Yong, FAN Weijie, ZHANG Taifeng, et al. Research progress of coating self-healing technology[J]. Journal of Chinese Society for Corrosion and Protection, 2019,39(4):299-305.
[9] 李海燕, 张丽冰, 李杰, 等. 外援型自修复聚合物材料研究进展[J]. 化工进展, 2014,33(1):133-139.
LI Haiyan, ZHANG Libing, LI Jie, et al. Research progress on foreign aid self-repairing polymer materials[J]. Chemical Industry and Engineering Progress, 2014,33(1):133-139.
[10] 李忠伦, 戢菁, 肖静. 自修复高分子复合材料专利技术研究进展分析[J]. 科技创新与应用, 2019(14):21-22,25.
LI Zhonglun, JIAN Jing, XIAO Jing. Analysis on the research progress of self-repairing polymer composite patenttechnology[J]. Science and Technology Innovation and Application, 2019 (14):21-22,25.
[11] 倪卓, 林煜豪, 郭震, 等. 自修复环氧树脂微胶囊合成及其应用机理[J]. 深圳大学学报(理工版), 2019,36(3):339-346.
NI Zhuo, LIN Yuhao, GUO Zhen, et al. Synjournal and reaction mechanism of self-repairing epoxy resin microcapsules[J]. Journal of Shenzhen University (Science and Technology Edition), 2019,36(3):339-346.
[12] WANG Y Y, LI Y, ZHANG Z, et al. Repair performance of self-healing microcapsule/epoxy resin insulating composite to physical damage[J]. Applied Sciences, 2019,9(19):4098.
[13] SATO K, NAKAJINA T, ANAZI J I. Preparation of poly(methylmethacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles[J]. Journal of Colloid and Interface Science, 2012,387(1):123-126.
doi: 10.1016/j.jcis.2012.07.090 pmid: 22967350
[1] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68.
[2] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[3] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[4] 王亮, 马晓光, 李俊君, 杨州. 热敏变色微胶囊的变色色谱拓展及其应用[J]. 纺织学报, 2020, 41(09): 88-94.
[5] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[6] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[7] 王森, 陈英. 纳米TiO2稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[8] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[9] 杨建, 张国庆, 刘国金, 柯孝明, 周岚. 复合相变微胶囊制备及其在棉织物上的应用[J]. 纺织学报, 2019, 40(10): 127-133.
[10] 徐艳, 籍晓倩, 陈坤林, 王潮霞. 自着色水性聚氨酯制备及其在棉织物涂层中的应用[J]. 纺织学报, 2019, 40(07): 85-89.
[11] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[12] 刘菲, 李秋瑾, 巩继贤, 李政, 刘秀明, 张健飞. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019, 40(02): 114-118.
[13] 余娟娟, 刘淑强, 吴改红, 阴晓龙. 玄武岩织物增强聚乳酸复合材料的制备及其拉伸断裂性能[J]. 纺织学报, 2019, 40(02): 82-86.
[14] 俞俭 逄增媛 魏取福. 聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟[J]. 纺织学报, 2018, 39(12): 95-100.
[15] 王亚 黄菁菁 张如全 . 艾蒿油-壳聚糖抗菌微胶囊的制备及其应用[J]. 纺织学报, 2018, 39(10): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!