纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 115-121.doi: 10.13475/j.fzxb.20200505207

• 染整与化学品 • 上一篇    下一篇

银纳米线改性棉织物的制备及其性能

赵永芳, 钱建华(), 孙丽颖, 彭慧敏, 梅敏   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2020-05-26 修回日期:2021-02-01 出版日期:2021-05-15 发布日期:2021-05-20
  • 通讯作者: 钱建华
  • 作者简介:赵永芳(1995—),女,硕士生。主要研究方向为新型纤维材料。

Preparation and properties of cotton fabric modified by silver nanowires

ZHAO Yongfang, QIAN Jianhua(), SUN Liying, PENG Huimin, MEI Min   

  1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-05-26 Revised:2021-02-01 Online:2021-05-15 Published:2021-05-20
  • Contact: QIAN Jianhua

摘要:

为提高棉织物附加值并改善其对改性成分的吸附性,首先利用高碘酸钠氧化处理以增加棉纤维的粘结性,然后采用一步多元醇还原法,在160 ℃条件下制备银纳米线(AgNWs)并分散到无水乙醇中,以棉织物为基底,采用浸渍—烘干法将AgNWs整理到棉织物表面。对AgNWs的形貌、长度、直径及结晶结构进行了测试与表征,并分析了整理后棉织物的防紫外线性能、导电性和耐洗性能。结果表明:随着AgNWs质量浓度的增加,棉织物的导电性能提高了80% 以上;当AgNWs质量浓度为10 g/L时,紫外线防护系数(UPF值)可达55,紫外线透过率可降至2.5%以下;氧化处理使改性棉织物的耐洗性能提高了20%,经氧化处理的改性棉织物经3次洗涤后UPF值仍可达46.51;该柔性导电棉织物可应用于柔性电子纺织品和抗紫外线产品中。

关键词: 银纳米线, 棉织物, 氧化处理, 防紫外线性能, 导电性, 柔性导电棉织物

Abstract:

In order to increase the added value of cotton fabrics and improve its adsorption to modifying components, sodium periodate was used for oxidation treatment to increase the adhesion of cotton fiber. Silver nanowires (AgNWs) were then prepared by one-step polyol reduction method at 160 ℃ and dispersed in anhydrous ethanol. With a cotton fabric as the substrate, AgNWs was finished on the surface of the fabric by the impregnation drying method. The finished cotton fabric was characterized, and its UV resistance, conductivity and washing resistance were tested. The results show that with the increase of AgNWs concentration, the electrical conductivity of the fabric increases by more than 80%. When the AgNWs concentration is 10 g/L, the UV protection factor (UPF) value reaches 55, and the UV transmittance is reduced to less than 2.5%. The washing resistance of the modified cotton fabric is improved by 20% after the oxidation treatment, and the UPF value of the modified fabric after three times of washing reaches 46.51. The flexible conductive cotton fabric can be applied to flexible electronic textiles and anti ultraviolet products.

Key words: silver nanowire, cotton fabric, oxidation treatment, UV resistance, conductivity, flexible conductive fabric

中图分类号: 

  • TS156

图1

AgNWs制备过程中溶液颜色变化"

图2

AgNWs的扫描电镜照片"

图3

AgNWs长度及直径分布图"

图4

AgNWs的XRD图谱"

表1

样品的防紫外线性能评定标准"

UPF值范围 防护效果 紫外线透过率/% UPF等级
15~24 良好 6.7~4.2 15,20
25~39 很好 4.1~2.6 25,30,35
40~50,50 极佳 ≤2.5 40,45,50,50+

图5

AgNWs质量浓度与UPF值的关系"

图6

AgNWs质量浓度与UVA透过率(a)和UVB透过率(b)的关系"

表2

不同质量浓度AgNWs处理过的棉织物的方块电阻"

AgNWs质量浓度/
(g·L-1)
方块电阻/
(Ω·□-1)
AgNWs质量浓度/
(g·L-1)
方块电阻/
(Ω·□-1)
10 87 30 60
20 75 40 15

图7

氧化处理前后棉织物扫描电镜照片(×1 000)"

图8

棉织物附着AgNWs的扫描电镜照片(×1 000)"

图9

不同时间氧化处理棉织物的方块电阻值"

图10

不同氧化处理时间的棉织物断裂强力"

表3

改性棉织物洗涤3次后的防紫外线性能"

氧化处理时间/min UPF值 透过率平均值/%
UVA UVB
0 30.46 2.01 1.61
15 42.17 0.97 0.62
30 45.42 0.93 0.60
45 46.51 0.89 0.51

图11

氧化处理时间对改性棉织物水洗质量损失率的影响"

[1] NOUREDDINE A, LUIS C, ERIC H. Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties[J]. ACS Applied Materials & Interfaces, 2009,1(10):2141-2146.
[2] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020,34(21):21081-21092.
ZHOU Yangzhou, QIAN Lei, ZHANG Ting. Researchprogress of silver nanowires and transparent conductive films[J]. Materials Reports, 2020,34(21):21081-21092.
[3] FERRARO G, FRATINI E. A simple synthetic approach to prepare silver elongated nanostructures: from nanorods tonanowires[J]. Journal of Chemical Education, 2019,96(3):553-557.
doi: 10.1021/acs.jchemed.8b00628
[4] JIA L C, ZHANG G, XU L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding[J]. ACS Applied Materials and Interfaces, 2019,11(1):1680-1688.
doi: 10.1021/acsami.8b18459
[5] 吴荣辉, 马丽芸, 张一帆, 等. 银纳米线涂层的编链结构纱线拉伸应变传感器[J]. 纺织学报, 2019,40(12):45-49,62.
WU Ronghui, MA Liyun, ZHANG Yifan, et al. Yarn tensile strain sensor with silver nanowire coating[J]. Journal of Textile Research, 2019,40(12):45-49, 62.
[6] 许红梅, 于肖. 高产率合成银纳米线及提升太阳电池银浆性能[J]. 中山大学学报(自然科学版), 2018,57(4):115-120.
XU Hongmei, YU Xiao. High yield synjournal of silver nanowires and improvement of silver paste performance of solar cells[J]. Journal of Sun Yat-Sen Universi-ty (Natural Science Edition), 2018,57(4):115-120.
[7] 卢健, 危韦, 杨光, 等. 银纳米线薄膜的制备及电磁屏蔽性能研究[J]. 化工新型材料, 2019,47(9):104-108,113.
LU Jian, WEI Wei, YANG Guang, et al. Preparation and electromagnetic shielding properties of silver nanowire films[J]. New Chemical Materials, 2019,47(9):104-108,113.
[8] 王博, 凡力华, 原韵, 等. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020,41(10):101-106.
WANG Bo, FAN Lihua, YUAN Yun, et al. Preparation and electrical storage properties of stretchable polypyrrole/cotton knitted fabric[J]. Journal of Textile Research, 2020,41(10):101-106.
[9] 李婷, 焦晨璐, 张伟伟, 等. 改性TiO2纳米线对棉织物的抗紫外及自清洁整理[J]. 纺织导报, 2016(3):51-54.
LI Ting, JIAO Chenlu, ZHANG Weiwei, et al. UV resistance and self-cleaning finishing of cotton fabric with modified TiO2 nanowires[J]. China Textile Leader, 2016 (3):51-54.
[10] LU Y, JIANG J, PARK S, et al. Wet-spinning fabrication of flexible conductive composite fibers from silver nanowires and fibroin[J]. Bulletin of the Korean Chemical Society, 2020,41(2):162-169.
doi: 10.1002/bkcs.v41.2
[11] 朱金铭, 钱建华, 孙丽颖, 等. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019,40(11):113-118.
ZHU Jinming, QIAN Jianhua, SUN Liying, et al. Preparation and properties of functional composite polyester fabric with high aspect ratio silver nanowires[J]. Journal of Textile Research, 2019,40(11):113-118.
[12] 于湖生. 纳米抗紫外整理对棉织物服用性能的影响[J]. 纺织学报, 2003,24(4):54-55.
YU Husheng. The effect of nano UV resistant finishing on the wearability of cotton fabric[J]. Journal of Textile, 2003,24(4):54-55,3.
[13] 彭军, 李津, 李伟, 等. 银纳米线研究进展与应用[J]. 现代化工, 2019,39(4):31-35.
PENG Jun, LI Jin, LI Wei, et al. Research progress and application of silver nanowires[J]. Modern Chemical Industry, 2019,39(4):31-35.
[14] LIAO X, LI H, LAI X, et al. Facile fabrication of superhydrophobic conductive nanowires cotton fabric via dipping-thermal curing method[J]. Materials Letters, 2019,255(15):126511.1-126511. 4.
[15] PATRYCJA G, EWELINA M, ALICJA N, et al. Investigation on functionalization of cotton and viscose fabrics with AgNWs[J]. Cellulose, 2017,24(1):409-422.
doi: 10.1007/s10570-016-1107-7
[16] GIESZ P, MACKIEWICZ E, GROBELNY J, et al. Mu.pngunctional hybrid functionalization of cellulose fabrics with AgNWs and TiO2[J]. Carbohydrate Polymers, 2017,177:397-405.
doi: 10.1016/j.carbpol.2017.08.087
[17] MOHAMMAD R N, MOHAMMAD S K. Silver nanowire-functionalized cotton fabric[J]. Carbohydrate Polymers, 2015,117(1):160-168.
doi: 10.1016/j.carbpol.2014.09.057
[18] ZHANG Y, TIAN W, LIU L, et al. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings[J]. Chemical Engineering Journal, 2019,372:1077-1090.
doi: 10.1016/j.cej.2019.05.012
[19] CHEN Z, YU W, DY Z. Study of electrothermal properties of silver nanowire/polydopamine/cotton-based nanoco-mposities[J]. Cellulose, 2019,26(10):5995-6007.
doi: 10.1007/s10570-019-02506-w
[20] DAVID R W, AARON R C, PHILIPPE B, et al. New perspectives on silver nanowire formation from dynamic silver ion mass concentration monitoring and nitric oxide productionin the polyol process[J]. Crystal Growth & Design, 2016,16(4):1861-1868.
doi: 10.1021/acs.cgd.5b01289
[1] 马亚男, 沈军炎, 骆晓蕾, 张聪, 尚小磊, 刘琳, KRUCINSKA Izabella, 姚菊明. 高效无卤阻燃棉织物的制备及其结构与性能[J]. 纺织学报, 2021, 42(03): 122-129.
[2] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[3] 武守营, 张琳萍, 徐红, 钟毅, 毛志平. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(03): 27-35.
[4] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[5] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[6] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[7] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[8] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[9] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[10] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[11] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[12] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[13] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[14] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[15] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!