纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 120-127.doi: 10.13475/j.fzxb.20200805608

• 染整与化学品 • 上一篇    下一篇

二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析

李一飞, 郑敏(), 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215006
  • 收稿日期:2020-08-12 修回日期:2021-03-18 出版日期:2021-06-15 发布日期:2021-06-28
  • 通讯作者: 郑敏
  • 作者简介:李一飞(1995—),男,硕士。主要研究方向为无机纳米材料的制备及其在柔性传感器上的应用。

Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis

LI Yifei, ZHENG Min(), CHANGZHU Ningzi, LI Liyan, CAO Yuanming, ZHAI Wangyi   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2020-08-12 Revised:2021-03-18 Published:2021-06-15 Online:2021-06-28
  • Contact: ZHENG Min

摘要:

为拓展二维过渡金属碳化物(MXene)在纺织品中的应用,基于LiF/HCl选择性刻蚀作用原理,以Ti3AlC2为前驱体,制备出二维纳米材料Ti3C2Tx。借助透射电子显微镜、扫描电子显微镜、X射线能谱衍射仪、紫外-可见吸收光谱仪等对Ti3C2Tx表面形貌、结构、化学组成进行表征。采用浸轧-预烘-焙烘工艺将Ti3C2Tx整理到织物上,优化了整理工艺,并研究了织物的防紫外线及导电性能。结果表明:当Ti3C2Tx质量浓度为8 g/L,轧余率为100%,浸渍40 min,150 ℃焙烘3 min 时,经过4次重复整理后,织物表面电阻达到最低值0.602 kΩ/□,此时Ti3C2Tx质量分数为1.25%;经过数次整理的织物有极好的防紫外线性能,紫外线防护系数达到500;整理后织物能保持良好的透气性,整理5次的织物经过20次水洗后表面电阻低于5 kΩ/□。

关键词: 二维过渡金属碳化物, 导电织物, 抗紫外线性能, 导电性能, 功能整理, 棉针织物, 智能服装

Abstract:

To study the application of textiles, a two-dimensional nanomaterial Ti3C2Tx was prepared using Ti3AlC2 as the precursor based on the selective etching of LiF/HCl. Transmission electron microscope, scanning electron microscope, X-ray energy spectrum diffraction, ultraviolet-visible absorption spectrum were used to characterize the surface morphology, structure, chemical composition of Ti3C2Tx, which was used to treat cotton knitted fabrics using the pad-dry-cure technique with optimised finishing technic parameters. The results show that under the condition that the concentration of Ti3C2Tx was 8 g/L, the liquid ratio was 100%, the dipping time was 40 min, the baking temperature was 150 ℃, baking time was 3 min and repeated 4 times, the fabric had the best conductivity with 1.25% Ti3C2Tx loading. Ti3C2Tx is uniformly distributed on the surface of the fabric, and the surface resistance is significantly reduced to 600 Ω/□. The fabric after several finishing has excellent UV resistance, and the ultraviolet protection value reaches 500. The finished fabric presents good breathability, and the surface resistance of the finished fabric is lower than 5 kΩ/□ after 5 times of finishing under 20 times of washing.

Key words: Ti3C2Tx(MXene), conductive fabric, UV resistance, electric conductivity, functional finishing, cotton knitted fabric, smart clothing

中图分类号: 

  • TS195.2

图1

不同刻蚀时间的Ti3C2Tx XRD图谱 "

图2

不同刻蚀阶段Ti3C2Tx及其整理的织物的SEM照片 "

图3

Ti3C2Tx纳米片的TEM照片 "

图4

Ti3C2Tx整理织物的EDS-SEM分析 "

图5

Ti3C2Tx质量浓度对织物表面电阻的影响 "

图6

轧余率对织物表面电阻的影响"

图7

浸渍时间对表面电阻的影响"

图8

焙烘温度对表面电阻的影响"

图9

焙烘时间对表面电阻的影响"

图10

整理次数对表面电阻与Ti3C2Tx负载量的影响 "

表1

Ti3C2Tx整理织物的防紫外线性能 "

整理次数 UPF值 透过率/%
UVA UVB
0(原织物) 32.97 2.08 2.87
1 354.20 0.31 0.29
2 500.00 0.16 0.16
3 500.00 0.09 0.08
4 500.00 0.09 0.08
5 500.00 0.08 0.08

图11

不同Ti3C2Tx整理次数织物的紫外线透过率 示出Ti3C2Tx的紫外-可见图谱。可以看出,Ti3C2Tx在255~350 nm是UV高吸收波段,这可能对应于氧化态Ti3C2Tx的带隙能[20],而且此波段处于UVA和UVB波长范围内,验证了Ti3C2Tx对UVA和UVB有很好的屏蔽效果。 "

图12

Ti3C2Tx的紫外-可见图谱 "

表2

Ti3C2Tx整理织物的透气性能 "

整理次数 透气率/(mm·s-1)
0(原织物)
1
2
3
4
5
302.12
231.02
210.64
202.46
200.18
189.20

表3

Ti3C2Tx整理织物的耐水洗性能 "

整理次数 表面电阻/(kΩ·□-1)
未水洗 水洗5次 水洗10次 水洗20次
1 2.46 8.84 15.69 37.45
3 0.95 1.82 3.77 8.68
5 0.59 1.10 2.16 4.62

表4

Ti3C2Tx整理织物的耐摩擦色牢度 "

整理次数 耐摩擦色牢度/级
干摩 湿摩
1 4 3
3 3~4 2~3
5 3 2
[1] MICHAEL N, MURAT K, VOLKER P, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37):4248-4253.
doi: 10.1002/adma.201102306
[2] MICHAEL G, MARIA R L, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
doi: 10.1038/nature13970
[3] GAO Y, WANG L, LI Z, et al. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate [J]. Solid State Sciences, 2014, 35:62-65.
doi: 10.1016/j.solidstatesciences.2014.06.014
[4] LIU Y X, RUI L, YANG L, et al. Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for Bisphenol A degradation [J]. Chemical Engineering Journal, 2018, 347(1):731-740.
doi: 10.1016/j.cej.2018.04.155
[5] NAVID A, SAIDUR R, ARIFUTZZAMAN A, et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as a new class of nanocomposites[J]. Journal of Energy Storage, 2020, 27:101115.
doi: 10.1016/j.est.2019.101115
[6] LI M X, WANG H Y, WANG X X, et al. Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose [J]. Biosensors and Bioelectronics, 2019, 142:111535.1-111535.6.
[7] LENKA L, BERTOK T, JAROSLAV F, et al. Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications [J]. Sensors & Actuators B Chemical, 2018, 263(15):360-368.
[8] LIANG G, ZHU P, WEI Y Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding [J]. Cellulose, 2019, 26(4):2833-2847.
doi: 10.1007/s10570-019-02284-5
[9] CAO W T, CHENG F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018, 12(5):4583-4593.
doi: 10.1021/acsnano.8b00997
[10] 康瑞洋, 张振宇, 郭梁超, 等. Ti3C2 MXene填充环氧树脂复合材料摩擦学性能研究 [J]. 硬质合金, 2019, 36(33):213-220.
KANG Ruiyang, ZHANG Zhenyu, GUO Liangchao, et al. study on the tribological property of epoxy composites filled with Ti3C2 MXene [J]. Cemented Carbide, 2019, 36(33):213-220.
[11] 马飞祥, 丁晨, 凌忠文, 等. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1):1114-1125.
MA Feixiang, DING Chen, LING Zhongwen, et al. Research progress on preparation and application of conductive fabrics[J]. Materials Reports, 2020, 34(1):1114-1125.
[12] 吉益民. 石墨烯功能性整理蚕丝织物及其结构和性能研究[D]. 苏州: 苏州大学, 2018:40-41.
JI Yimin. Study on the preparation, structure and properties of graphene functional finished silk fabrics[D]. Suzhou: Soochow University, 2018:40-41.
[13] 范静静, 王鸿博, 傅佳佳, 等. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019, 40(4):90-95.
FAN Jingjing, WANG Hongbo, FU Jiajia, et al. Preparation of composite conductive cotton fabric based on carbon nanotubes by layer-by-layer self-assembly[J]. Journal of Textile Research, 2019, 40(4):90-95.
[14] 王赫, 王洪杰, 王闻宇, 等. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 材料导报, 2018, 32(5):730-734.
WANG He, WANG Hongjie, WANG Wenyu, et al. Research progress in polyacrylonitrile (PAN) pasted carbon nanofibers electrode materials for supercapa-citor[J]. Material Reports, 2018, 32(5):730-734.
[15] MOHAMMAD R N, MOHAMMAD S K. Silver nanowire-functionalized cotton fabric[J]. Carbohydrate Polymers, 2015, 117(1):160-168.
doi: 10.1016/j.carbpol.2014.09.057
[16] 吴依琳, 李永贵, 麻文效. 金属纤维混纺电磁屏蔽织物的研究进展[J]. 纺织科技进展, 2020(6):1-4.
WU Yilin, LI Yonggui, MA Wenxiao. Research progress of metal fiber blended electromagnetic shielding fabric[J]. Progress in Textile Science & Technology, 2020(6):1-4.
[17] 周兆懿, 赵亚萍, 蔡再生. 原位聚合法制备涤纶/聚苯胺复合导电织物[J]. 印染, 2009, 35(5):1-5.
ZHOU Zhaoyi, ZHAO Yaping, CAI Zaisheng, et al. Preparation of polyaniline/polyester conducting composite fabric with in-situ polymerization[J]. China Dyeing & Finishing, 2009, 35(5):1-5.
[18] 王博, 凡力华, 原韵, 等. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10):107-112.
WANG Bo, FAN Lihua, YUAN Yun, et al. Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric[J]. Journal of Textile Research, 2020, 41(10):107-112.
[19] 李世慧, 董霞, 何瑾馨. 聚噻吩与涤纶导电织物的制备及性能研究[J]. 天津纺织科技, 2017 (1):29-33.
LI Shihui, DONG Xia, HE Jinxin, et al. Study on preparation and performance of polythiophene and polyester conductive fabric[J]. Tianjin Textile Science & Technology, 2017(1):29-33.
[20] CHAO P, XU W K, WEI P, et al. Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: Effect of surface coverage [J]. International Journal of Hydrogen Energy, 2019, 44(57):29975-29985.
doi: 10.1016/j.ijhydene.2019.09.190
[1] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[2] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[3] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[4] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[5] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[6] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[7] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[8] 王玉婷, 凌忠文, 杨欣, 刘宇清. 纳米氧化钨复合棉纤维的制备及其光致变色性能[J]. 纺织学报, 2021, 42(02): 21-26.
[9] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[10] 金鹏, 薛哲彬, 戈垚. 具有实时瓦斯监测功能的新型智能矿工服设计[J]. 纺织学报, 2020, 41(11): 143-149.
[11] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[12] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[13] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[14] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[15] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!