纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 198-207.doi: 10.13475/j.fzxb.20200800910

• 综合述评 • 上一篇    下一篇

液体冷却服研究进展及消防应用可行性研究

王小波1, 钱晓明1(), 王立晶2, 刘永胜1, 白赫1   

  1. 1. 天津工业大学 纺织科学与工程学院, 天津 300387
    2. 皇家墨尔本理工大学 服装与纺织学院, 澳大利亚 墨尔本 3000
  • 收稿日期:2020-08-03 修回日期:2021-01-25 出版日期:2021-06-15 发布日期:2021-06-28
  • 通讯作者: 钱晓明
  • 作者简介:王小波(1989 —),男,博士生。主要研究方向为防护服装及服装热湿传递机制。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309300);天津市科技计划项目(17PTSYJC00150)

Review on liquid cooling garment and its feasibility study in fire fighting

WANG Xiaobo1, QIAN Xiaoming1(), WANG Lijing2, LIU Yongsheng1, BAI He1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Fashion and Textiles, RMIT University, Melbourne 3000, Australia
  • Received:2020-08-03 Revised:2021-01-25 Published:2021-06-15 Online:2021-06-28
  • Contact: QIAN Xiaoming

摘要:

消防战斗服具有突出的热防护能力,但热湿舒适性差,无法及时排出人体的多余热量。为缓解消防战斗中的人体热蓄积,避免热伤害,探究了液体冷却服装服用性能的影响因素及研究进展,包括冷却管路、冷却介质、基础服装、冷却系统的智能控制和区域个性化冷却;在评估消防战斗环境、分析人体热平衡特点和总结现行消防冷却策略的基础上,结合液体冷却系统和消防战斗服的各自特点,分析了液体冷却系统嵌入消防战斗服的可行性,并探讨其未来发展趋势。认为液体冷却系统和消防战斗服具有良好的契合性,并指出提升冷却能力、发展智能控制、开发特适性硬件和优化冷却回路是其未来的发展方向。

关键词: 液体冷却服装, 液体冷却消防服, 智能消防服, 消防冷却策略, 衣下微环境管理

Abstract:

Fire fighting suit has outstanding thermal protection ability, but the poor thermal and wet conductivity hinders the timely discharge of the excessive heat from the human body. Aimed at the alleviation of human heat accumulation in fire fighting and avoid heat damage, this paper reviewed on the influencing factors and research progress in the wearability of liquid cooling garment, including the cooling pipes, cooling medium, basic clothing, intelligent control of cooling system and regional cooling. On the basis of evaluating the fire fighting environment, the characteristics of human thermal balance was analyzed and summarizing the current fire fighting cooling strategies, combined with the respective characteristics of liquid cooling system and fire fighting suits were summarized. The feasibility of liquid cooling system embeded into fire fighting suit was analyzed, and its development trend discussed. The paper recognized that the liquid cooling system and the fire fighting suits have good compatibility. it was suggested that the improvement of cooling capacity, development of intelligent control, development of special hardware and optimization of cooling loop would be the future development directions.

Key words: liquid cooling garment, liquid cooling firefighter protective clothing, intelligent firefighter protective clothing, cooling strategy in firefighting, micro-environment management under clothing

中图分类号: 

  • TS101

图1

LCG的基本结构"

表1

LCG中的冷却回路参数"

参考文献
编号
总长
度/m
覆盖
率/%
内径/
mm
外径/
mm
头部和颈部
占比/%
手臂占
比/%
躯干占
比/%
腿部占
比/%
[8] 60 29.4 26.9 43.8
[9] 60 26.2 25.6 48.2
[10] 120 22 1.6 3.2 29.5 20.5 24.5 25.6
[11] 40 13 4.0 6.0
[12] 50 17 4.0 6.0
[13] 25 20 30 25
[14] 2.4 4.0 9.6 18.2 33 39.3
[15] 80 22 3.0 5.0 4.5 16.7 20 36.8
[16] 60 11 25 25 50
[17] 91 16 1.6 3.2
[18] 106 19 1.6 3.2 18.9 22.6 58.5
[19] 6.23 2.4 4 100
[20] 17 2 4
[21] 14.3~31.4 100

表2

冷却介质参数及其冷却效率"

参考文献编号 介质 环境温度和
相对湿度
入口温度/℃ 出口温度/℃ 流量/(L·min-1) 冷却效率/W
[12] 30 ℃, — 13.2 17.1 1.65 446
[14] 23 ℃, 60% 16 68~265
[17] 35 ℃, 40% 16~30 1.8 0~300
[18] 躯干:19~32 1.5 10~70
35 ℃, 40% 手臂:17~32 10~65
腿部:8~29 30~340
[19] (24±1) ℃, (24±2)% 10 0.143 81
[28] 30 ℃, 40% 根据需要调节 3.8 0~300
[21] 35 ℃, 30% 7~10 0.25~0.75 220~284

表3

消防战斗热环境危险等级分类"

热暴露等级 救援场景 环境温度/℃ 热通量/(kW·m-2) 作业时间/min 战斗特点
常规热环境 消防员打开消防栓,并在一定距离外进行消防战斗 60~100 0.83~1.67 10~30 大多数的消防战斗环境
危险热环境 消防员在一个燃烧的建筑外进行消防战斗 120~300 2~12.5 1~10 短时间的消防战斗
紧急热环境 消防员进入一个燃烧的建筑物进行消防救援工作 300~1 200 12~200 0.08~0.33 需要特殊的防护装备
[1] HUANG Dongmei, YANG Hua, QI Zhenkun, et al. Questionnaire on firefighters' protective clothing in China[J]. Fire Technology, 2012, 48(2):255-268.
doi: 10.1007/s10694-011-0214-0
[2] MCLELLAN T M. The efficacy of an air-cooling vest to reduce thermal strain for light armour vehicle personnel[R].Toronto: Defence Research and Development, 2007:1-34.
[3] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014, 35(8):124-132.
ZHU Fanglong, FAN Janbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014, 35(8):124-132.
doi: 10.1177/004051756503500205
[4] 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(6):111-117.
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018, 39(6):111-117.
[5] BILLINGHAM J. Heat exchange between man and his environment on the surface of the moon[J]. Journal of the British Interplanetary Society, 1959, 17:297-300.
[6] BURTON D R, COLLIER L. The development of water conditioned suits[M]. Farnborough: Royal Aircraft Establishment, 1964:400-403.
[7] FLOURIS A D, CHEUNG S S. Design and control optimization of microclimate liquid cooling systems underneath protective clothing[J]. Annals of Biomedical Engineering, 2006, 34(3):359-372.
doi: 10.1007/s10439-005-9061-9
[8] BURTON D R. Performance of water conditioned suits[J]. Aerospace Medicine, 1966, 37(5):500-504.
[9] ALLAN J R. The liquid conditioned suit: A physiological assessment[R]. Farnborough, Hants: RAF Institute of Aviation Medicine, 1966:1-8.
[10] WEBB P, ANNIS J A. Bio-thermal responses to varied work programs in men kept thermally neutral by water cooled clothing[R]. Washington: National Aeronautics and Space Administration, 1966:1-65.
[11] GOLD A J, ZORNITZER A. Effect of partial body cooling on man exercising in a hot, dry environ-ment[J]. Aerospace Medicine, 1968, 39(9):944-946.
[12] SHVARTZ E, BENOR D. Total body cooling in warm environments[J]. Journal of Applied Physiology, 1971, 31(1):24-27.
doi: 10.1152/jappl.1971.31.1.24
[13] SHVARTZ E. Efficiency and effectiveness of different water cooled suits--a review[J]. Aerospace Medicine, 1972, 43(5):488-491.
[14] SHITZER A, CHATO J C, HERTIG B A. Thermal protective garment using independent regional control of coolant temperature[J]. Aerospace Medicine, 1973, 44(1):49.
[15] SHVARTZ E, ALDJEM M, BEN-MORDECHAI J, et al. Objective approach to a design of a whole-body, water-cooled suit[J]. Aerospace Medicine, 1974, 45(7):711-715.
[16] HARRISON M H, BELYAVIN A J. Operational characteristics of liquid-conditioned suits[J]. Aviation Space & Environmental Medicine, 1978, 49(8):994-1003.
[17] MARTIN H, WERNER Jürgen. Control of liquid cooling garments: technical control of body heat storage[J]. Applied Human Science Journal of Physiological Anthropology, 1996, 15(4):177.
doi: 10.2114/jpa.15.177
[18] XU Xiaojiang, HEXAMER M, WERNER J. Multi-loop control of liquid cooling garment systems[J]. Ergonomics, 1999, 42(2):282-298.
doi: 10.1080/001401399185658
[19] KIM D E, LABAT K. Design process for developing a liquid cooling garment hood[J]. Ergonomics, 2010, 53(6):818-828.
doi: 10.1080/00140131003734229
[20] GUO Tinghui, SHANG Baofeng, DUAN Bin, et al. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015,49-50:47-54.
[21] DIONNE J P, SEMENIUK K. Thermal manikin evaluation of liquid cooling garments intended for use in hazardous waste management[C]// MAKRIS A, TEAL W. Waste Management 2003 Symposium. Tucson: Army Soldier and Biological Chemical Command, 2003:1-6.
[22] 郑康奇, 姜宏伟. 导热阻燃软质PVC的制备及性能研究[J]. 绝缘材料, 2016, 49(9):42-46.
ZHENG Kangqi, JIANG Hongwei. Preparation and properties of soft pvc with thermal conductive and flame retardancy[J]. Insulating Materials, 2016, 49(9):42-46.
[23] SHEN Xiaoning, JI Minzun, ZHANG Shiming, et al. Fabrication of multi-walled carbon-nanotube-grafted polyvinyl-chloride composites with high solar-thermal-conversion performance[J]. Composites Science and Technology, 2019, 170(20):77-84.
doi: 10.1016/j.compscitech.2018.11.029
[24] JETTÉ F X, DIONNE J P, ROSE J, et al. Effect of thermal manikin surface temperature on the performance of personal cooling systems[J]. European Journal of Applied Physiology, 2004, 92(6):669-672.
doi: 10.1007/s00421-004-1112-7
[25] FRIM J. Heat balance of subjects wearing protective clothing with a liquid- or air-cooled vest[J]. Aviation Space & Environmental Medicine, 1991, 62(5):383-391.
[26] RICHARDSON G, COHEN J B, MCPHATE D C, et al. A personal conditioning system based on a liquid-conditioned vest and a thermoelectric supply system[J]. Ergonomics, 1988, 31(7):1041-1047.
doi: 10.1080/00140138808966743
[27] WANG Tao, WANG Liang, BAI Lizhan, et al. Experimental study on the performance of a liquid cooling garment with the application of MEPCMS[J]. Energy Conversion and Management, 2015, 103:943-957.
doi: 10.1016/j.enconman.2015.07.043
[28] BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Assessment of an active liquid cooling garment intended for use in a hot environment[J]. Applied Ergonomics, 2017, 58:182-189.
doi: 10.1016/j.apergo.2016.06.009
[29] HEXAMER M, WERNER J. Control of liquid cooling garments: technical control of mean skin temperature and its adjustments to exercise[J]. Applied Human Science Journal of Physiological Anthropology, 1997, 16(6):237.
doi: 10.2114/jpa.16.237
[30] NYBERG K L, DILLER K R, WISSLER E H. Automatic control of thermal neutrality for space suit applications using a liquid cooling garment[J]. Aviation Space and Environmental Medicine, 2000, 71(9):904-913.
[31] CAO Huantian, BRANSON D H, PEKSOZ S, et al. Fabric selection for a liquid cooling garment[J]. Textile Research Journal, 2006, 76(7):587-595.
doi: 10.1177/0040517506067375
[32] NUNNELEY S A. Water cooled garments: a review[J]. Space Life Sciences, 1970, 2(3):335-360.
[33] WEBB P, ANNIS J F. Cooling required to suppress sweating during work[J]. Journal of Applied Physiology, 1968, 25(5):489-493.
doi: 10.1152/jappl.1968.25.5.489
[34] STARR J B. Fluidic temperature control for liquid-cooled space suits[M]. Washington: National Aeronautics and Space Administration, 1970:179-189.
[35] TROUTMAN S J Jr, WEBB P. Automatic control of water cooled suits from differential temperature measurements final report[R].Washington: NASA Electronics Research Center, 1969:1-36.
[36] WEBB P, ANNIS J F, TROUTMAN S J. Automatic control of water cooling in space suits[R]. Washington: National Aeronautics and Space Administration, 1968:1-92.
[37] NYBERG K L, DILLER K R, WISSLER E H. Model of human/liquid cooling garment interaction for space suit automatic thermal control[J]. Journal of Biomechanical Engineering, 2001, 123(1):114-120.
doi: 10.1115/1.1336147
[38] KUZNETZ L H. Automatic control of human thermal comfort by a liquid-cooled garment[J]. Journal of Biomechanical Engineering, 1980, 102(2):155.
doi: 10.1115/1.3138213
[39] CHEUVRONT S N, KOLKA M A, CADARETTE B S , et al. Efficacy of intermittent, regional microclimate cooling[J]. Journal of Applied Physiology, 2003, 94(5):1841-1848.
doi: 10.1152/japplphysiol.00912.2002
[40] CROCKER J F, JENNINGS D C. Metabolic heat balances in working men wearing liquid-cooled sealed clothing[C]// WEBB P. 3rd Manned Space Flight Meeting. Houston: NASA, 1964:111-126.
[41] BLAIR D A, GLOVER W E, RODDIE I C. Cutaneous vasomotor nerves to the head and trunk[J]. Journal of Applied Physiology, 1961, 16(1):119-122.
doi: 10.1152/jappl.1961.16.1.119
[42] HERTZMAN A B. Vasomotor regulation of cutaneous circulation[J]. Physiological Reviews, 1959, 39(2):280.
doi: 10.1152/physrev.1959.39.2.280
[43] UDAYRAJ, TALUKDAR P, DAS A, et al. Heat and mass transfer through thermal protective clothing - A review[J]. International Journal of Thermal Sciences, 2016, 106:32-56.
doi: 10.1016/j.ijthermalsci.2016.03.006
[44] ZINGANO B W. A discussion on thermal comfort with reference to bath water temperature to deduce a midpoint of the thermal comfort temperature zone[J]. Renewable energy, 2001, 23(1):41-47.
doi: 10.1016/S0960-1481(00)00101-4
[45] VEGHTE J H, WEBB P. Body cooling and response to heat[J]. Journal of applied physiology, 1961, 16(2):235-238.
doi: 10.1152/jappl.1961.16.2.235
[46] KATUNTSEV V P, OSIPOV Y Y, BARER A S, et al. The main results of EVA medical support on the Mir Space Station[J]. Acta Astronautica, 2004, 54(8):577-583.
doi: 10.1016/S0094-5765(03)00231-5
[47] TANAKA M, BRISSON G U Y R, VOLLE M A. Body temperatures in relation to heart rate for workers wearing impermeable clothing in a hot environment[J]. American Industrial Hygiene Association Journal, 1978, 39(11):885-890.
doi: 10.1080/0002889778507879
[48] COLBURN D, REIS S E, SUYAMA J, et al. A comparison of cooling techniques in firefighters after a live burn evolution[J]. Prehospital Emergency Care, 2011, 15(2):226-232.
doi: 10.3109/10903127.2010.545482
[49] HOSTLER D, REIS S E, BEDNEZ J C, et al. Comparison of active cooling devices with passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: a report from the fireground rehab evaluation (FIRE) trial[J]. Prehospital Emergency Care, 2011, 14(3):300-309.
doi: 10.3109/10903121003770654
[50] CARTER J B, BANISTER E W, MORRISON J B. Effectiveness of rest pauses and cooling in alleviation of heat stress during simulated fire-fighting activity[J]. Ergonomics, 1999, 42(2):299-313.
doi: 10.1080/001401399185667
[51] MCENTIRE S J, SUYAMA J, HOSTLER D. Mitigation and prevention of exertional heat stress in firefighters: a review of cooling strategies for structural firefighting and hazardous materials responders[J]. Prehospital Emergency Care, 2013, 17(2):241-260.
doi: 10.3109/10903127.2012.749965
[52] BENNETT B L, HAGAN R D, HUEY K A, et al. Comparison of two cool vests on heat-strain reduction while wearing a firefighting ensemble[J]. European Journal of Applied Physiology and Occupational Physiology, 1995, 70:322-328.
[53] CHOU C, TOCHIHARA Y, KIM T. Physiological and subjective responses to cooling devices on firefighting protective clothing[J]. European Journal of Applied Physiology, 2008, 104(2):369-374.
doi: 10.1007/s00421-007-0665-7
[54] CARTER J M, RAYSON M P, WILKINSON D M, et al. Strategies to combat heat strain during and after firefighting[J]. Journal of Thermal Biology, 2007, 32(2):109-116.
doi: 10.1016/j.jtherbio.2006.12.001
[55] 牛丽. 基于具有液冷主动降温作用的消防服设计[D]. 天津: 天津工业大学, 2018:55-69.
NIU Li. Design of fire protective clothing based on active cooling of liquid cooling[D]. Tianjin: Tiangong University, 2018:55-69.
[56] KIM J H, COCA A, WILLIAMS W J, et al. Subjective perceptions and ergonomics evaluation of a liquid cooled garment worn under protective ensemble during an intermittent treadmill exercise[J]. Ergonomics, 2011, 54(7):626-635.
doi: 10.1080/00140139.2011.583362
[57] LAWSON L K, CROWN E M, ACKERMAN M Y, et al. Moisture effects in heat transfer through clothing systems for wildland firefighters[J]. International Journal of Occupational Safety & Ergonomics, 2004, 10(3):227-238.
[58] 何华玲, 于志财, 张健飞, 等. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(8):108-113.
HE Hualing, YU Zhicai, ZHANG Jianfei, et al. Influence of moisture content on heat storage performance of multilayer fabric assemblies for firefighters[J]. Journal of Textile Research, 2017, 38(8):108-113.
[59] HE Hualing, YU Zhicai, SONG Guowen. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. Journal of the Textile Institute, 2016, 107(8):1030-1036.
[60] 郝习波, 李辉芹, 巩继贤, 等. 单向导湿功能纺织品的研究进展[J]. 纺织学报, 2015, 36(7):157-161.
HAO Xibo, LI Huiqin, GONG Jixian, et al. Review on unidirectional water transport functional fabrics[J]. Journal of Textile Research, 2015, 36(7):157-161.
[61] 贾亚楠. 消防服隔热层的产品设计及工艺性能研究[D]. 上海: 东华大学, 2016:51-54.
JIA Yanan. Study on product design and spunlace process of heat insulation layer for fire clothing[D]. Shanghai: Donghua University, 2016:51-54.
[62] 郭庭辉. 液冷服中的流动与传热及其系统研制[D]. 武汉: 华中科技大学, 2015:80-100.
GUO Tinghui. Flow and heat transfer in liquid cooling garment and its system development[D]. Wuhan: Huazhong University of Science and Technology, 2015:80-100.
[1] 张思宇, 余莉, 贾贺, 刘鑫. 柔性伞衣织物的自由变形折叠建模及其充气机制研究[J]. 纺织学报, 2021, 42(07): 108-114.
[2] 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81.
[3] 汪泽幸, 李帅, 谭冬宜, 孟硕, 何斌. 循环加载处理对聚氯乙烯涂层膜材料蠕变性能的影响[J]. 纺织学报, 2021, 42(07): 101-107.
[4] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[5] 张建新, 黄钢, 胡旭东. 基于光谱成像技术的织物光泽模糊综合评价[J]. 纺织学报, 2021, 42(06): 106-113.
[6] 田利强, 梁敏, 龙康, 陈秀清. 膨胀石墨负载纳米铁的制备及其对水中Cr(Ⅵ)及染料的去除[J]. 纺织学报, 2021, 42(06): 133-139.
[7] 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188.
[8] 秦潇璇, 瞿立新, 谢春萍. 原色与脱色牦牛绒精梳纯纺纱工艺研究[J]. 纺织学报, 2021, 42(06): 78-84.
[9] 贺雅勤, 毕雪蓉, 钱希茜, 阮钧, 郁崇文. 牵伸对纱条条干不匀影响的模拟研究[J]. 纺织学报, 2021, 42(06): 85-90.
[10] 骆晓蕾, 李紫嫣, 马亚男, 刘琳, KRUCINSKAIzabella, 姚菊明. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(05): 193-202.
[11] 袁理, 熊莹, 谷迁, 王丹书, 霍达, 刘军平. 染色纤维与色纺纱线间的颜色传递规律及其影响因素[J]. 纺织学报, 2021, 42(05): 122-129.
[12] 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50.
[13] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[14] 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154.
[15] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!