纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 31-38.doi: 10.13475/j.fzxb.20201202708

• 特约专栏:纺织材料阻燃新技术 • 上一篇    下一篇

棉/粘胶混纺织物的阻燃抗菌整理

张姣姣1,2,3, 李雨洋1,2,3, 刘云1,2,3, 董朝红1,2,3(), 朱平1,2,3   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    3.青岛大学 生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2020-12-10 修回日期:2021-04-24 出版日期:2021-07-15 发布日期:2021-07-22
  • 通讯作者: 董朝红
  • 作者简介:张姣姣(1994—),女,硕士生。主要研究方向为功能性纤维及功能性纺织品。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309000);山东省自然科学基金项目(ZR2020ME064)

Flame retardant and antibacterial treatments for cotton-viscose blended fabrics

ZHANG Jiaojiao1,2,3, LI Yuyang1,2,3, LIU Yun1,2,3, DONG Chaohong1,2,3(), ZHU Ping1,2,3   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2020-12-10 Revised:2021-04-24 Published:2021-07-15 Online:2021-07-22
  • Contact: DONG Chaohong

摘要:

为获得阻燃和抗菌复合功能的纺织品,合成了一种梳状硅-磷-氮协效阻燃抗菌整理剂,并对棉/粘胶混纺织物进行功能整理;通过单因素实验对棉/粘胶混纺织物的整理工艺进行优化,得到最佳整理工艺:阻燃抗菌整理剂质量浓度为500 g/L,2-膦酸基丁烷-1,2,4-三羧酸质量浓度为150 g/L,在50 ℃浸渍40 min后二浸二轧,70 ℃预烘5 min,130 ℃焙烘150 s。借助红外光谱仪、垂直法阻燃性能测试仪、数显氧指数仪、扫描电子显微镜、能量色散X射线光谱仪、热重分析仪等对织物的结构和性能进行分析。结果表明:整理后棉/粘胶混纺织物的极限氧指数可稳定保持在28%以上,阴燃时间、续燃时间均为0 s,织物燃烧后表面富集Si、P、N元素的致密的炭层,在800 ℃时的残炭量为40.16%;整理后棉/粘胶混纺织物与未整理织物相比,对于大肠杆菌和金黄色葡萄球菌的抑菌率分别为99.05%和95.52%,该织物具有较好的阻燃抗菌性能。

关键词: 棉/粘胶混纺织物, 阻燃整理, 抗菌整理, 功能整理, 功能性纺织品

Abstract:

In order to obtain both flame retardant and antibacterial properties for textiles, the composite functional agent for cotton-viscose blended fabrics was synthesized from comb-like silicon-phosphor-nitrogen synergistic flame retardant-antibacterial agent. The treatment process of cotton-viscose blended fabrics was optimized through single factor experiment, and fabric structure and performance were analyzed using infrared spectrometer, vertical combustion instrument, limit oxygen index (LOI) tester, scanning electron microscope, energy dispersive X-ray spectrometer, thermogravimetric analysis, and so on.The results show that the optimal processing parameters are 500 g/L flame retardant antibacterial agent and 150 g/L 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), soaking at 50 ℃ for 40 min, two dip and two roll, pre-drying at 70 ℃ for 5 min, and curing at 130 ℃ for 150 s. The LOI value of the treated cotton-viscose blended fabrics was above 28%, and the after-flame time and after-glow time were both 0 s. The dense carbon layer with Si, P and N elements enriched on the surface of the fabrics after combustion was 40.16% at 800 ℃. The antibacterial rates of treated cotton-viscose blended fabrics againstEscherichia coli and Staphylococcus aureus were 99.05% and 95.52%, respectively, indicating good flame retardant and antibacterial property.

Key words: cotton-viscose blended fabrics, flame retardant finishing, antibacterial finishing, functional finishing, functional textiles

中图分类号: 

  • TS195.5

图1

整理剂DSCFT与纤维素纤维的反应方程式"

图2

整理后棉/粘胶混纺织物的红外光谱"

表1

整理剂质量浓度对棉/粘胶混纺织物阻燃性能的影响"

整理剂质量
浓度/(g·L-1)
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
300 4.62 24.3 7.69 0
350 6.71 25.2 6.22 0
400 9.02 25.6 8.81 0 14.4
450 11.57 25.7 7.97 0
500 13.80 26.3 0 0 12.1
550 16.25 26.5 0 0 12.8

表2

交联剂质量浓度对棉/粘胶混纺织物阻燃性能的影响"

交联剂质量
浓度/(g·L-1)
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
0 14.94 27.2 7.45 0 -
50 15.58 28.0 0 0 10.5
100 16.77 28.1 0 0 24.0
150 16.93 28.5 0 0 13.0
200 17.63 28.8 0 0 13.0

表3

整理时间对棉/粘胶混纺织物阻燃性能的影响"

整理
时间/min
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
10 17.12 27.2 0 0 10.3
20 18.12 28.2 0 0 12.4
30 18.98 28.2 0 0 12.5
40 19.18 28.7 0 0 12.6
50 24.82 29.0 0 0 13.0

表4

整理温度对棉/粘胶混纺织物阻燃性能的影响"

整理
温度/℃
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
20 20.10 27.6 0 0 14.3
30 20.43 27.7 0 0 12.6
40 21.01 28.0 0 0 12.4
50 21.89 28.2 0 0 11.6
60 23.51 28.3 0 0 13.9

表5

预烘温度对棉/粘胶混纺织物阻燃性能的影响"

预烘
温度/℃
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
40 24.51 29.3 0 0 10.6
50 24.55 29.7 0 0 9.6
60 25.27 29.6 0 0 10.2
70 25.82 30.2 0 0 10.6
80 25.60 30.2 0 0 9.7

表6

焙烘温度对棉/粘胶混纺织物阻燃性能的影响"

焙烘
温度/℃
质量增
加率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
120 20.13 29.3 0 0 13.0
130 21.84 29.5 0 0 11.2
140 21.15 29.7 0 0 17.1
150 21.14 29.1 0 0 14.0
160 20.07 29.2 0 0 12.9
170 19.77 29.1 0 0 13.7
180 20.26 29.1 0 0 14.9

表7

预烘时间对棉/粘胶混纺织物阻燃性能的影响"

预烘
时间/min
质量增加
率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
0 25.99 29.1 0 0 13.5
5 25.71 29.2 0 0 8.3
10 25.69 28.9 0 0 13.0
15 25.49 29.2 0 0 10.7
20 24.27 29.2 0 0 11.7

表8

焙烘时间对棉/粘胶混纺织物阻燃性能的影响"

焙烘
时间/s
质量增加
率/%
LOI
值/%
续燃时
间/s
阴燃时
间/s
损毁
长度/cm
120 23.56 28.2 0 0 14.5
150 23.00 28.2 0 0 10.6
180 22.50 28.2 0 0 13.9
210 22.26 28.2 0 0 11.2
240 22.56 28.0 0 0 13.6

图3

整理前后棉/粘胶混纺织物的燃烧形貌"

图4

DSCFT整理棉/粘胶混纺织物燃烧前后的EDX谱图"

表9

DSCFT整理后棉/粘胶混纺织物燃烧前后元素分布"

元素 含量/%
织物燃烧前 织物燃烧后
33.25 44.32
42.34 29.06
2.27 3.94
4.56 7.89
3.80 5.46

图5

整理前后棉/粘胶混纺织物的热重曲线"

表10

整理前后棉/粘胶混纺织物在氮气氛围下的热稳定性数据"

样品 T5%/
T10%/
Tmax1/
Tmax2/
Rmax/
(%·℃-1)
800 ℃时
残炭量/%
整理前 220 286 339 - 1.23 12.16
整理后 196 238 263 286 0.74 40.16

图6

DSCFT阻燃抗菌剂的抗菌作用"

图7

整理后棉/粘胶混纺织物的抗菌机制"

图8

不同质量浓度整理剂处理后织物的断裂强力"

[1] WANG S H, LIU J, SUN L, et al. Preparation of flame-retardant/dyed cotton fabrics: flame retardancy, dyeing performance and flame retardant/dyed mechanism[J]. Cellulose, 2020, 27(17):10425-10440.
doi: 10.1007/s10570-020-03469-z
[2] 刘湖滨. 纺织用品中阻燃纤维的阻燃机理及应用[J]. 印染助剂, 2020, 37(9):6-10.
LIU Hubin. Flame retardant mechanism and application of flame retardant fiber in textile products[J]. Textile Auxiliaries, 2020, 37(9):6-10.
[3] 李文楠, 陈晓燕, 张姣姣, 等. 卤胺封端聚硅氧烷对棉织物阻燃抗菌性能的研究[J]. 纤维素科学与技术, 2020(3):1-9.
LI Wennan, CHEN Xiaoyan, ZHANG Jiaojiao, et al. Flame retardant/antibacterial performance of N-halamineterminated polysiloxane on cotton fabric[J]. Journal of Cellulose Science and Technology, 2020(3):1-9.
[4] 周青青, 陈嘉毅, 祁珍明, 等. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(5):112-120.
ZHOU Qingqing, CHEN Jiayi, QI Zhenming, et al. Preparation and characterization of flame retardant and antibacterial cotton fabric[J]. Journal of Textile Research, 2020, 41(5):112-120.
[5] DONG C H, HE P S, LU Z, et al. Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131:1079-1087.
doi: 10.1007/s10973-017-6604-x
[6] 马兴博, 朱平, 陈晓燕, 等. 含硅-磷-氮阻燃剂对棉织物拒水阻燃复合功能的研究[J]. 纤维素科学与技术, 2019, 27:59-65.
MA Xingbo, ZHU Ping, CHEN Xiaoyan, et al. Study on water-repellent and flame-retardant composite function of silicon-phosphorus-nitrogen flame retardant for cotton fabric[J]. Journal of Cellulose Science and Technology, 2019, 27:59-65.
[7] 杨海鹏, 于秋彦, 胡娜, 等. 光敏性梳状共聚物膜的制备及其表面形貌调控[J]. 功能材料, 2014, 14(45):14129-14139.
YANG Haipeng, YU Qiuyan, HU Na, et al. Preparation and controlled surface morphology of photosensitive comb copolymer films[J]. Journal of Functional Materials, 2014, 14(45):14129-14139.
[8] 吴瑾光. 近代傅里叶变换红外光谱技术及应用[M]. 北京: 科学技术文献出版社, 1994: 613-634.
WU Jinguang. Modern Fourier transform infrared spectroscopy technology and application[M]. Beijing: Scientific and Technical Documentation Press, 1994: 613-634.
[9] CHENG X W, WU Y X, HU B Q, et al. Facile preparation of an effective intumescent flame-retardant coating for cotton fabric[J]. Surface Innovations, 2020, 8:315-322.
doi: 10.1680/jsuin.20.00021
[10] CHEN Y, WANG D F, LIU S D, et al. A novel P-N-based flame retardant with multi-reactive groups for treatment of cotton fabrics[J]. Cellulose, 2020, 27:9075-9089.
doi: 10.1007/s10570-020-03387-0
[11] WAN C Y, LIU M S, HE P P, et al. A novel reactive flame retardant for cotton fabric based on a thiourea-phosphoric acid polymer[J]. Industrial Crops and Products, 2020, 154:112625.
doi: 10.1016/j.indcrop.2020.112625
[12] JIANG Z M, LI H, HE Y W, et al. Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane[J]. Applied Surface Science, 2019, 479:765-775.
doi: 10.1016/j.apsusc.2019.02.159
[13] EDWARDS B, RUDOLF S, HAUSER P, et al. Preparation, polymerization, and performance evaluation of halogen-free radiation curable flame retardant monomers for cotton substrates[J]. Industrial & Enginerring Chemistry Research, 2015, 54:577-584.
[14] LIU J, DONG C H, ZHANG Z, et al. Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer[J]. Cellulose, 2020, 27:3531-3549.
doi: 10.1007/s10570-020-03016-w
[15] LI Z S, CHENG J, YANG X X, et al. Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid[J]. International Journal of Biological Macromolecules, 2020, 150:1-8.
doi: 10.1016/j.ijbiomac.2020.01.259
[16] XU D H, GAO Z Y, XU B, et al. A facile and effective flame-retardant coating for cotton fabric with alpha-aminodiphosphonate siloxane[J]. Polymer Degradation and Stability, 2020, 180:109312.
doi: 10.1016/j.polymdegradstab.2020.109312
[17] CHANG S C, SLOPEK R, CONDON B, et al. Surface Coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process[J]. Industrial & Engineering Chemistry Research, 2014, 53:3805-3812.
doi: 10.1021/ie403992x
[18] LI Z S, LIU H, XU X, et al. Surface modification of silicone elastomer with rosin acid-based quaternary ammonium salt for antimicrobial and biocompatible properties[J]. Materials & Design, 2020, 189:108493.
[19] 陈一宁, 但年华, 肖世维, 等. 季铵盐及其在抗菌材料中的应用[J]. 西部皮革, 2013(8):13-16,21.
CHEN Yining, DAN Nianhua, XIAO Shiwei, et al. Application of quaternary ammonium salt in antibacterial materials[J]. West Leather, 2013(8):13-16,21.
[20] KWSNIEWSKA D, CHEN Y L, WIECZOREK D. Biological activity of quaternary ammonium salts and their derivatives[J]. Pathogens, 2020, 9(6):459.
doi: 10.3390/pathogens9060459
[21] 蔡再生. 纤维化学与物理[M].2版. 北京: 中国纺织出版社, 2004:184-186.
CAI Zaisheng. Fiber chemistry and physics[M].2nd ed. Beijing: China Textile & Apparel Press, 2004:184-186.
[1] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[2] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[3] 李永贺, 瞿凌曦, 徐壁, 蔡再生, 葛凤燕. 生物基聚对苯二甲酸丙二醇酯织物的阻燃与三防一步法泡沫整理[J]. 纺织学报, 2021, 42(04): 8-15.
[4] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[5] 马亚男, 沈军炎, 骆晓蕾, 张聪, 尚小磊, 刘琳, KRUCINSKA Izabella, 姚菊明. 高效无卤阻燃棉织物的制备及其结构与性能[J]. 纺织学报, 2021, 42(03): 122-129.
[6] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[7] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[8] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[9] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[10] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[11] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[12] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[13] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[14] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[15] 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!