纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 11-18.doi: 10.13475/j.fzxb.20210200108

• 特约专栏:纺织材料阻燃新技术 • 上一篇    下一篇

磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能

刘可, 陈爽, 肖茹()   

  1. 东华大学 高性能纤维及制品教育部重点实验室, 上海 201620
  • 收稿日期:2021-02-01 修回日期:2021-04-21 出版日期:2021-07-15 发布日期:2021-07-22
  • 通讯作者: 肖茹
  • 作者简介:刘可(1990—),男,博士。主要研究方向为阻燃聚酰胺6纤维的制备。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309000);中央高校基本科研业务费专项资金资助项目(2232021G-02)

Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group

LIU Ke, CHEN Shuang, XIAO Ru()   

  1. Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-02-01 Revised:2021-04-21 Published:2021-07-15 Online:2021-07-22
  • Contact: XIAO Ru

摘要:

为提高聚酰胺6(PA6)纤维的阻燃性能,以10-(2,5-二羧基苯氧基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(DOPODP)为共聚阻燃剂,复配二硫化钼(MoS2)或硫化锌(ZnS),制备DOPODP共聚协效阻燃PA6,经熔融纺丝制备阻燃PA6纤维,并对其结构、性能及阻燃机制进行研究。结果表明:DOPODP经共聚法成功引入PA6,DOPODP可提高PA6的阻燃性能,但其熔融温度、结晶温度等下降;引入协效阻燃剂后,阻燃PA6垂直燃烧(UL94)级别为V-0级,极限氧指数(LOI值)达30%以上;DOPODP对PA6主要表现为气相阻燃作用,DOPODP分解产生含磷自由基可捕获活性自由基,协效阻燃剂可促进PA6成炭;相比PA6纤维,阻燃PA6纤维力学性能下降,而织物的LOI值提高。

关键词: 聚酰胺6, 阻燃剂, 二硫化钼, 硫化锌, 共聚法, 阻燃纤维, 功能性纤维

Abstract:

In order to improve the flame retardancy of polyamide 6 (PA6) fibers,a flame retardant was synthesized by copolymerization with 10-(2,5-dicarboxyl phenoxyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPODP) and combination of molybdenum disulfide (MoS2) or zinc sulfide (ZnS), the flame retardant PA6 fibers were prepared via melt spinning. The structure, properties, and the flame-retardant mechanism of the co-PA6 and its fibers were also studied. The results show that the DOPODP had been introduced into PA6 molecular chains, the flame retardancy of the copolymer was improved, but the melting temperature and crystallization temperature were reduced. The synergistic flame retardant PA6 achieved a V-0 rating according to the UL94 criterion with an LOI value greater than 30%. The study of the flame-retardant mechanism indicated that the DOPODP in PA6 mainly take effects in gas phase, DOPODP could decompose to phosphorus radicals. In addition, with the introduction of synergistic flame retardants, the char content of flame retardant PA6 was increased. Compared with PA6 fiber, the mechanical properties of flame retardant PA6 fibers were decreased, and the LOI value of the fabrics increased.

Key words: polyamide 6, flame retardant agent, molybdenum disulfide, zinc sulfide, copolymerization, flame retardant fiber, functional fiber

中图分类号: 

  • TQ323.6

图1

PA6-DOPODP合成过程"

表1

PA6-DOPODP/MoS2/ZnS实验配方 "

试样编号 质量分数/%
DOPODP MoS2 ZnS
0# 0 0 0
1# 3 0 0
2# 5 0 0
3# 7 0 0
4# 9 0 0
5# 9 2 0
6# 9 0 2

图2

DOPODP与DOPODP-DMDA盐的红外谱图"

图3

试样的红外谱图"

图4

4#试样的结构式与核磁共振谱图 "

表2

PA6-DOPODP元素分析结果"

试样
编号
元素含量/% 磷含量/% 反应
比/%
C H N O 理论 实测
0# 63.02 9.94 12.20 14.84
1# 63.13 9.70 11.86 14.99 0.230 0.221 96.09
2# 63.21 9.67 11.89 14.86 0.387 0.371 95.87
3# 63.45 9.53 11.80 14.71 0.536 0.512 95.52
4# 63.59 9.48 11.75 14.55 0.697 0.635 91.10

表3

PA6-DOPODP/MoS2/ZnS的相对黏度、数均分子量及其分布 "

试样编号 相对黏度 数均分子量/(g·mol-1) 多分散性指数
0# 2.52 2.19×104 1.76
1# 2.55 2.27×104 1.79
2# 2.47 2.18×104 1.82
3# 2.45 2.12×104 1.84
4# 2.37 1.92×104 1.97
5# 2.42
6# 2.39

表4

PA6-DOPODP/MoS2/ZnS的DSC数据 "

试样编号 熔融温度/℃ 熔融焓/(J·g-1) 结晶温度/℃ 结晶度/%
0# 221.3 71.7 182.7 37.6
1# 218.4 56.7 179.4 29.7
2# 214.8 56.3 176.4 29.5
3# 211.5 55.4 171.4 29.1
4# 209.5 52.5 157.9 27.6
5# 210.1 53.4 179.9 28.5
6# 209.1 57.3 166.7 30.6

表5

垂直燃烧与极限氧指数测试结果"

试样编号 垂直燃烧 LOI值/%
是否引燃脱脂棉 级别
0# V-2 23.5±0.2
1# V-2 24.1±0.2
2# V-2 25.2±0.2
3# V-2 26.5±0.2
4# V-2 27.6±0.2
5# V-0 30.3±0.2
6# V-0 30.7±0.2

图5

PA6-DOPODP/MoS2/ZnS的HRR曲线 "

表6

锥形量热测试数据"

试样
编号
TTI/
s
p-HRR/
(kW·m-2)
THR/
(MJ·m-2)
av-EHC/
(MJ·kg-1)
SEA/
(m2·kg-1)
残炭
量/%
0# 62 1 132 136 37 210 0.19
4# 51 868 105 28 436 3.11
5# 52 785 92 27 394 6.52
6# 53 766 94 27 366 6.37

图6

DOPODP及0#和4#试样的高温热裂解图 "

表7

PA6-DOPODP/MoS2/ZnS的TG数据 "

试样编号 初始热分解温度/℃ 最大热分解温度/℃ 残炭量/%
0# 380.3 453.3 0.1
1# 374.7 417.9 3.2
2# 370.7 413.3 3.4
3# 368.4 412.8 3.8
4# 365.9 403.1 4.9
5# 366.7 404.3 6.9
6# 367.5 422.1 8.3

图7

试样残炭形貌"

图8

试样残炭拉曼光谱图"

图9

纤维表面及淬断面形貌"

表8

纤维的力学性能"

试样编号 断裂强度/(cN·dtex-1) 断裂伸长率/%
0# 4.3 57.8
1# 4.0 66.9
2# 3.7 63.5
3# 3.5 66.3
4# 3.3 55.6
5# 2.6 46.2
6# 2.3 32.3

表9

织物的阻燃性能"

试样
编号
续燃时间/
s
阴燃时间/
s
损毁长度/
cm
是否引燃
脱脂棉
LOI值/
%
0# 31.5 0.0 14.2 22.1±0.2
4# 1.2 0.0 4.7 27.5±0.2
5# 1.3 0.0 3.2 29.3±0.2
6# 1.9 0.0 4.8 29.7±0.2
[1] ZHANG S M, FAN X S, XU C C, et al. An inherently flame-retardant polyamide 6 containing a phosphorus group prepared by transesterification polymerization[J]. Polymer, 2020, 207:122890.
doi: 10.1016/j.polymer.2020.122890
[2] GROH K J, BACKHAUS T, CARNEY-ALMROTH B, et al. Overview of known plastic packaging-associated chemicals and their hazards[J]. Science of the Total Environment, 2019, 651:3253-3268.
doi: 10.1016/j.scitotenv.2018.10.015
[3] LIU K, LI Y Y, TAO L, et al. Synjournal and characterization of inherently flame retardant polyamide 6 based on a phosphine oxide derivative[J]. Polymer Degradation and Stability, 2019, 163:151-160.
doi: 10.1016/j.polymdegradstab.2019.03.004
[4] LIU K, LI Y Y, TAO L, et al. Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant[J]. RSC Advances, 2018, 8(17):9261-9271.
doi: 10.1039/C7RA13228J
[5] LEE S H, OH S W, LEE Y H, et al. Preparation and properties of flame-retardant epoxy resins containing reactive phosphorus flame retardant[J]. Journal of Engineered Fibers and Fabrics, 2020, 15:1-8.
[6] WEI P, LOU H J, WANG W, et al. Synjournal and properties of wholly aromatic phosphorus-containing thermotropic liquid crystal copolyesters with excellent fibre formation ability[J]. Liquid Crystals, 2020, 48(4):466-475.
doi: 10.1080/02678292.2020.1789768
[7] ZHANG J B, WANG X L, HE Q X, et al. A novel phosphorus-containing poly(1,4-cyclohexylenedimethylene terephthalate) copolyester: synjournal, thermal stability, flammability and pyrolysis behavior[J]. Polymer Degradation and Stability, 2014, 108:12-22.
doi: 10.1016/j.polymdegradstab.2014.06.003
[8] SHI X X, JIANG S H, ZHU J Y, et al. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions[J]. RSC Advances, 2018, 8(18):9985-9995.
doi: 10.1039/C7RA13315D
[9] PENG H Y, WANG D, ZHANG L P, et al. Amorphous cobalt borate nanosheets grown on MoS2 nanosheet for simultaneously improving the flame retardancy and mechanical properties of polyacrylonitrile composite fiber[J]. Composites Part B: Engineering, 2020, 201:108298.
doi: 10.1016/j.compositesb.2020.108298
[10] LI A J, XU W Z, WANG G S, et al. Novel strategy for molybdenum disulfide nanosheets grown on titanate nanotubes for enhancing the flame retardancy and smoke suppression of epoxy resin[J]. Journal of Applied Polymer Science, 2018, 135(15):46064.
doi: 10.1002/app.46064
[11] JASNA V C, ANILKUMAR T, NAIK A A, et al. Chlorinated styrene butadiene rubber/zinc sulfide: novel nanocomposites with unique properties-structural, flame retardant, transport and dielectric properties[J]. Journal of Polymer Research, 2018, 25(6):144.
doi: 10.1007/s10965-018-1536-0
[12] 周卫东, 余小伟, 陈龙, 等. 纤维级复合阻燃PA6的制备及其热稳定性研究[J]. 合成纤维工业, 2020, 43(3):16-21.
ZHOU Weidong, YU Xiaowei, CHEN Long, et al. Preparation and thermal stability of fiber-grade composite flame retardant PA6[J]. China Synthetic Fiber Industry, 2020, 43(3):16-21.
[13] MOURGAS G, GIEBEL E, SCHNECK T, et al. Syntheses of intrinsically flame-retardant polyamide 6 fibers and fabrics[J]. Journal of Applied Polymer Science, 2019, 136(31):47829.
doi: 10.1002/app.v136.31
[14] GE H, WANG W, PAN Y, et al. An inherently flame-retardant polyamide containing a phosphorus pendent group prepared by interfacial polymerization[J]. RSC Advances, 2016, 6(85):81802-81808.
doi: 10.1039/C6RA17108G
[15] LI Y Y, LIN Y Z, SHA K, et al. Preparation and characterizations of flame retardant melamine cyanurate/polyamide 6 composite fibers via in situ polymerization[J]. Textile Research Journal, 2017, 87(5):561-569.
doi: 10.1177/0040517516632478
[16] LEVCHIK S V, WEIL E D. Combustion and fire retardancy of aliphatic nylons[J]. Polymer International, 2000, 49(10):1033-1073.
doi: 10.1002/(ISSN)1097-0126
[17] YOUNIS A A. Optimization of mechanical, thermal, and ignition properties of polyester fabric using urea and phosphoric acid[J]. Journal of Industrial Textiles, 2020, 49(6):791-808.
doi: 10.1177/1528083718798636
[18] DUAN X C, YU B, YANG T H, et al. In situ polymerization of nylon 66/reduced graphene oxide nanocomposites[J]. Journal of Nanomaterials, 2018, 2018:1047985.
[1] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[2] 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24.
[3] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[4] 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10.
[5] 文玉峰, 马晓谱, 盛方园, 朱志国. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(06): 71-77.
[6] 骆晓蕾, 李紫嫣, 马亚男, 刘琳, KRUCINSKAIzabella, 姚菊明. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(05): 193-202.
[7] 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138.
[8] 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34.
[9] 肖梦苑, 周新科, 张佳悦, 任元林. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188.
[10] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[11] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[12] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[13] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
[14] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019, 40(12): 79-85.
[15] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!