纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 151-157.doi: 10.13475/j.fzxb.20200503107

• 服装工程 • 上一篇    下一篇

风速对单双层着装状态下运动服针织面料湿阻的影响

王利君1,2(), 马希明1, 丁殷佳1, 陈诚毅1   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省服装工程技术研究中心, 浙江 杭州 310018
  • 收稿日期:2020-05-15 修回日期:2021-04-12 出版日期:2021-07-15 发布日期:2021-07-22
  • 作者简介:王利君(1971—),女,副教授,博士。主要研究方向为功能服装及其舒适性。E-mail: wanglijunhz@zstu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11471287);中国纺织工业联合会应用基础研究项目(J201801);浙江省服装工程技术研究中心省部级重点实验室开放基金项目(2019FZKF09);浙江理工大学科研启动基金项目(17072191-Y)

Influence of wind speed on moisture resistance of single-layer and double-layer combined sportswear knit fabrics

WANG Lijun1,2(), MA Ximing1, DING Yinjia1, CHEN Chengyi1   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Received:2020-05-15 Revised:2021-04-12 Published:2021-07-15 Online:2021-07-22

摘要:

为构建软风范围内单双层着装状态下运动服面料的湿阻预测有效模型,选取常用的12种T恤、8种外套面料,实验测试了4种风速下的面料湿阻,通过聚类分析获取代表性的T恤和外套面料,模拟T恤和外套的双层着装状态,测试不同风速下T恤与外套双层运动服针织面料之间的湿阻。构建了T恤和外套面料湿阻与风速的三阶多项式模型、双层组合面料湿阻与内外层面料湿阻之间的线性模型。研究结果表明:在软风范围内,T恤、外套及其双层组合面料均随风速增大而减小,内层T恤面料湿阻对双层组合运动服面料的湿阻影响更大;T恤、外套面料湿阻预测模型平均绝对百分比误差分别为2.22%、4.85%,双层组合湿阻模型平均绝对百分比误差为3.20%。

关键词: 风速, 运动服, 针织面料, 湿阻, 湿阻预测模型

Abstract:

In order to build an effective prediction model of moisture resistance of single-layer and double-layer combined sportswear knit fabrics in soft wind range, twelve T-shirt fabrics and eight outerwear fabrics which are commonly used were selected for this study. The moisture resistance of fabrics under four wind speeds was tested, and the representative T-shirt and outerwear fabrics were obtained by cluster analysis. By simulating the two-layer dressing state of T-shirt and outerwear, quantitative test of moisture resistance between skin, T-shirt and outerwear under different wind speeds were carried out.The third-order polynomial model of the moisture resistance of T-shirt and outerwear fabric and wind speed, and the linear model between the moisture resistance of double-layer fabrics combination and the moisture resistance of inner and outer layer fabric were constructed. The results show that the moisture resistance of T-shirt, outerwear and double-layer fabrics combination decreases with the increase of wind speed within the range of soft wind, and the moisture resistance of the inner T-shirt fabric has a greater impact on the moisture resistance of the double-layer sportswear fabric combination. The mean absolute percentage error of the prediction models of moisture resistance of T-shirt and outerwear fabric is 2.22% and 4.85% respectively, and the mean absolute percentage error of double-layer fabrics combination moisture resistance model is 3.20%.

Key words: wind speed, sportswear, knit fabric, moisture resistance, prediction model of moisture resistance

中图分类号: 

  • TS941.6

表1

织物规格参数表"

试样
编号
试样
名称
组织 成分 线密度/
tex
密度/(线圈·(5 cm)-1) 面密度/
(g·m-2)
厚度/
mm
横向 纵向
1# 汗布 纬平针 100%棉 18.22 70 100 156.67 0.54
2# 汗布 纬平针 100%棉 14.58 84 98 157.33 0.52
3# 棉毛布 双罗纹 100%棉 14.58 84 87 199.33 0.68
4# 弹力罗纹布 1+1罗纹 95%棉、5%氨纶 18.29 57 55 237.33 0.85
5# 汗布 纬平针 95%粘胶、5%氨纶 14.58 85 131 189.33 0.46
6# 珠地网眼布 集圈 100%涤纶 8.33 84 121 127.33 0.49
7# 珠地网眼布 集圈 100%涤纶 8.33 75 91 149.33 0.61
8# 珠地网眼布 集圈 94%涤纶、6%氨纶 8.33 76 65 151.33 0.60
9# 四面弹力布 纬平针 70%粘胶、26%涤纶、4%氨纶 15.39 77 114 286.67 0.80
10# 弹力汗布 纬平针 55%棉、40%涤纶、5%氨纶 17.62 79 107 201.00 0.66
11# 畦编布 畦编 100%涤纶 8.33 92 91 141.33 0.55
12# 半畦编布 半畦编 100%涤纶 8.33 90 96 135.67 0.46
13# 弹力罗纹布 2+2罗纹 96%棉、4%氨纶 27.44 55 66 318.33 1.17
14# 绒布 经编起绒 100%涤纶 16.67 89 94 289.00 0.89
15# 卫衣布 衬垫 95%棉、5%氨纶 18.45 71 88 253.67 0.68
16# 棉毛布 双罗纹 94%涤纶、6%氨纶 16.67 86 139 207.67 0.58
17# 四面弹绒布 长毛绒 90%涤纶、10%氨纶 18.45 67 85 221.67 1.32
18# 卫衣布 衬垫 55%棉、45%涤纶 23.12 78 91 234.67 0.87
19# 弹力罗纹布 2+2罗纹 52%棉、42%涤纶、6%氨纶 17.49 60 82 240.33 1.00
20# 弹力罗马布 双罗纹 65%粘胶、30%锦纶、5%氨纶 11.71 91 144 260.67 0.62

表2

织物性能参数"

试样
编号
织物芯吸高度/cm 干燥速度/
(g·h-1)
透湿率/
(g·m-2·h-1)
透气率/
(mm·s-1)
纵向 横向
1# 0.07 0.05 0.10 542.049 1 155.67
2# 0.03 0.03 0.08 519.117 1 080.00
3# 0.10 0.10 0.04 515.901 523.00
4# 4.23 3.93 0.05 533.451 560.33
5# 9.23 8.80 0.06 553.592 723.33
6# 11.43 13.17 0.16 594.582 1 922.00
7# 5.13 4.92 0.11 556.537 1 267.33
8# 14.80 9.23 0.25 551.943 1 959.33
9# 1.23 1.43 0.02 467.609 309.03
10# 12.40 12.47 0.07 577.856 423.57
11# 19.17 17.73 0.25 569.376 1 516.33
12# 15.67 13.13 0.25 564.547 2 055.00
13# 1.33 0.42 0.05 505.065 418.70
14# 0.87 4.47 0.05 506.007 393.33
15# 0.10 0.13 0.10 537.574 887.33
16# 12.17 12.43 0.12 516.748 1 127.47
17# 1.03 1.53 0.09 489.282 567.00
18# 0.05 0.05 0.05 437.008 546.67
19# 0.07 0.05 0.10 499.435 657.67
20# 10.28 11.23 0.09 500.177 873.70

图1

自制网架"

图2

4种风速下T恤面料和外套面料湿阻与风速、标准湿阻的三维关系图"

表3

T恤和外套面料不同阶数多项式拟合结果"

面料 阶数 RMSE MAE R2 MAPE/%
T恤 一阶 4.418 3 4.146 2 0.736 6 35.430 0
二阶 1.822 4 1.621 3 0.955 2 15.370 0
三阶 0.306 0 0.253 6 0.998 7 2.220 0
四阶 0.249 7 0.183 7 0.999 2 1.510 0
外套 一阶 4.491 0 4.146 3 0.723 8 31.553 2
二阶 2.007 1 1.728 0 0.944 8 14.751 9
三阶 0.717 4 0.574 8 0.993 0 4.850 0
四阶 0.717 2 0.565 2 0.993 0 4.748 2

图3

T恤面料与外套面料聚类结果"

表4

风速对双层组合运动服面料湿阻的影响"

试样编号 织物组合 不同风速下湿阻/(m2·Pa·W-1)
0.1 m/s 0.5 m/s 1.0 m/s 1.5 m/s
Z1 A1B1 46.497 27.956 25.350 22.743
Z2 A1B2 44.477 27.036 22.781 19.258
Z3 A1B3 45.938 27.764 24.241 21.818
Z4 A2B1 44.468 27.026 24.053 21.630
Z5 A2B2 43.181 26.289 22.583 20.343
Z6 A2B3 44.642 27.566 23.128 20.338
Z7 A3B1 42.848 24.674 22.067 19.827
Z8 A3B2 40.829 23.204 20.048 17.258
Z9 A3B3 41.373 23.199 21.691 18.718

图4

湿阻预测值与测试值对比"

[1] CARAVELLO V. Total evaporative resistance of selected clothing ensembles[D]. Tampa: University of South Florida, 2004: 10-15.
[2] 宗艺晶, 李俊. 消防服热湿舒适性客观测评表征指标的比较[J]. 东华大学学报(自然科学版), 2013, 39(6):748-753.
ZONG Yijing, LI Jun. Comparison of objective evaluation indices on thermal-moisture comfort of firefighting protective clothing[J]. Journal of Donghua University (Natural Science), 2013, 39(6):748-753.
[3] 杨敏, 束琴琴, 戴宏钦, 等. 面料热湿性能对服装热舒适性的影响[J]. 现代丝绸科学与技术, 2015, 30(4):129-132.
YANG Min, SHU Qinqin, DAI Hongqin, et al. The effects of wet fabric thermal properties on clothing thermal comfort[J]. Modern Silk Science & Technology, 2015, 30(4):129-132.
[4] 马希明, 丁殷佳, 王利君. 显汗状态下双层运动服面料热湿舒适性预测[J]. 丝绸, 2020, 57(2):6-12.
MA Ximing, DING Yinjia, WANG Lijun. Prediction of dynamic thermal and wet comfort of sportswear fabric under the sweat state[J]. Journal of Silk, 2020, 57(2):6-12.
[5] 张昭华, 翟世瑾, 尹思源. 衣下间隙对织物系统热湿阻的影响[J]. 纺织学报, 2016, 37(6):101-106.
ZHANG Zhaohua, ZHAI Shijin, YIN Siyuan. Influence of air gaps on thermal and evaporative resistances of fabric system[J]. Journal of Textile Research, 2016, 37(6):101-106.
[6] CUI Z Y, FAN J T, WU Y S. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams[J]. Ergonomics, 2016, 59(8):999-1008.
doi: 10.1080/00140139.2015.1111428
[7] 于瑶, 钱晓明, 范金土. 风速与步速对服装表面空气层热阻的影响[J]. 纺织学报, 2009, 30(8):107-112.
YU Yao, QIAN Xiaoming, FAN Jintu. Effect of wind velocity and walk speed on thermal insulation of clothing[J]. Journal of Textile Research, 2009, 30(8):107-112.
[8] HAVENITH G, HEUS R, LOTENS W A. Resultant clothing insulation: a function of body movement, posture, wind, clothing fit and ensemble thickness[J]. Ergonomics, 1990, 33(1):67-84.
doi: 10.1080/00140139008927094
[9] NILSSON H O, GAVHED D C, HOLMER I. Effect of step rate on clothing insulation-measurement with a moveable thermal manikin[C]// LOTENS W A, HAVENITH G. Proceedings of the Fifth International Conference on Environmental Ergonomics. Maastricht: [s. n.], 1992: 174-175.
[10] 王发明, 及二丽, 郑智毓, 等. 多层服装热湿传递特性的预测[J]. 苏州大学学报(工科版), 2007, 27(6):1-6.
WANG Faming, JI Erli, ZHENG Zhiyu, et al. Prediction on the heat and moisture transfer property of multi-layers garments[J]. Journal of Soochow University(Engineering Science Edition), 2007, 27(6):1-6.
[11] 赵蒙蒙, 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10):94-97.
ZHAO Mengmeng, SONG Xiaoxia. Influence of clothing adopting ventilation system on thermal comfort[J]. Journal of Textile Research, 2017, 38(10):94-97.
[12] TORVI D A. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton: University of Alberta, 1997: 1-277.
[13] 朱福忠, 巫班金, 马旭东, 等. 纺织品生理舒适性的测试方法及仪器[J]. 纺织科技进展, 2011(6):64-68.
ZHU Fuzhong, WU Banjin, MA Xudong, et al. Test methods and instruments of physical comfort of textile[J]. Progress in Textile Science & Technology, 2011(6):64-68.
[14] 王玉荣. 商务预测方法[M]. 北京: 对外经济贸易大学出版, 2003: 11-12.
WANG Yurong. Business forecasting method[M]. Beijing: University of Foreign Economics and Trade Press, 2003: 11-12.
[1] 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72.
[2] 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101.
[3] 李新彤, 高哲, 顾洪阳, 丛洪莲. 针织西服面料的挺括风格研究[J]. 纺织学报, 2020, 41(11): 53-58.
[4] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[5] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[6] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[7] 刘海桑, 董智佳, 张琦, 夏风林, 丛洪莲. 经编全成形运动套装的尺寸预测与建模[J]. 纺织学报, 2019, 40(02): 76-81.
[8] 张文娟, 纪峰, 张瑞云, 赵晓杰, 王妮, 王俊丽, 张建祥. 毛织物孔隙特征与透湿性关系[J]. 纺织学报, 2019, 40(01): 67-72.
[9] 师云龙 钱晓明 梁肖肖 张文欢 邓辉 王立晶 范金土 . 仿人体出汗比例的 Walter 暖体假人皮肤制备[J]. 纺织学报, 2018, 39(05): 103-107.
[10] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[11] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
[12] 段杏元 胡源盛. 男士针织内衣热性能的测量与分析[J]. 纺织学报, 2016, 37(12): 92-96.
[13] 丛洪莲 张永超. 生物基锦纶的性能及其在针织面料中的应用[J]. 纺织学报, 2015, 36(07): 22-27.
[14] 陈益松 徐军 袁春艳. 出汗热护式热板仪系统的设计分析与试验研究[J]. 纺织学报, 2015, 36(03): 128-134.
[15] 吴菲非 于高杰 陈雁. 磁性纤维含量对针织面料服用性能的影响[J]. 纺织学报, 2014, 35(3): 27-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!