纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 164-168.doi: 10.13475/j.fzxb.20200803505
YANG Zhengyan1, XUE Wenliang1(), ZHANG Chuanxiong2, DING Yi1, MA Yanxue1
摘要:
为解决消费者由于频繁购入相似服装以及不知如何穿搭的问题,设计了一款智能搭配系统,为用户提供穿搭建议,减少重复购入相似衣服导致的浪费。利用爬虫技术获取大量中高端品牌的服装搭配数据,利用深度学习的新兴模型生成式对抗网络,对服装搭配数据进行学习,挖掘搭配的颜色、款式等视觉规律,训练模型能够实现输入上装图像时智能生成下装图像功能,再通过图像相似度计算匹配到用户预设的个人衣柜,最后结合温度为用户推荐合适的下装。通过对比原搭配和模型生成搭配,验证了该方法的有效性,为智能穿搭提供了新思路。
中图分类号:
[1] | 唐婕. 基于iOS平台的智能衣柜管理APP的设计与实现[D]. 北京:北京邮电大学, 2017:5-7. |
TANG Jie. Design and implementation of an intelligent clothing management APP based on iOS platform[D]. Beijing:Beijing University of Posts and Telecommunications, 2017:5-7. | |
[2] | 张泽堃, 张海波. 服装智能搭配研究现状综述[J]. 网络安全技术与应用, 2019(10):128-130. |
ZHANG Zekun, ZHANG Haibo. A summary of the research status of intelligent clothing collocation[J]. Network Security Technology and Application, 2019(10):128-130. | |
[3] | 曹纯, 仲兆满. 智能衣物搭配系统的设计与实现[J]. 福建电脑, 2019, 35(7):21-25. |
CAO Chun, ZHONG Zhaoman. Design and implementation of intelligent clothing matching system[J]. Journal of Fujian Computer, 2019, 35(7):21-25. | |
[4] | 梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1):1-17. |
LIANG Junjie, WEI Jianjing, JIANG Zhengfeng. Overview of GAN generation adversarial network[J]. Computer Science and Exploration, 2020, 14(1):1-17. | |
[5] | 邹秀芳, 朱定局. 生成对抗网络研究综述[J]. 计算机系统应用, 2019, 28(11):1-9. |
ZHOU Xiufang, ZHU Dingju. Review on generative adversarial network[J]. Computer Systems & Applications, 2019, 28(11):1-9. | |
[6] | ISOLA Phillip, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C] // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New Jersey: Institute of Electrical and Electronic Engineers, 2017:5967-5976. |
[7] |
BARDIS Michelle. Deep learning with limited data: organ segmentation performance by U-Net[J]. Electronics, 2020, 9(8) :1199.
doi: 10.3390/electronics9081199 |
[8] | DONG C, LOY C C, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence. New Jersey: Institute of Electrical and Electronic Engineers, 2016: 295-307. |
[9] | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C] // NIPS'17 Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates, 2017:5769-5779. |
[10] | 刘方园, 王水花, 张煜东. 方向梯度直方图综述[J]. 计算机工程与应用, 2017, 53(19):1-7,25. |
LIU Fangyuan, WANG Shuihua, ZHANG Yudong. Survey on histogram-based optimization[J]. Computer Engineering and Applications, 2017, 53(19):1-7,25. |
[1] | 甘美辰, 李敏. 女装搭配推荐系统的设计与实现[J]. 纺织学报, 2020, 41(10): 122-131. |
[2] | 许倩, 陈敏之. 基于深度学习的服装丝缕平衡性评价系统[J]. 纺织学报, 2019, 40(10): 191-195. |
[3] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164. |
[4] | 汪珊娜 张华熊 康锋. 基于卷积神经网络的领带花型情感分类[J]. 纺织学报, 2018, 39(08): 117-123. |
[5] | 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135. |
|