纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 95-100.doi: 10.13475/j.fzxb.20201000406
WANG Yudong1,2, JI Changchun1(), WANG Xinhou3, GAO Xiaoping4
摘要:
为改善熔喷流场和降低纤维直径,在普通双槽形气流模头的基础上设计了新型模头,并对其进行数值研究。借助Gambit软件建立新型模头的几何模型,采用Fluent软件对其流场进行模拟,分析了纺丝线上的速度、温度、湍流强度分布规律及其对纤维牵伸细化的影响。结果表明:与普通的双槽形模头相比,带有内稳定器的新型双槽形熔喷模头可有效地减小回流区的面积,增大纺丝线上的速度极大值,降低纺丝线上的速度波动和温度衰减速率;带有空气压缩器的新型气流模头可提高纺丝线上的流场速度和温度,但对模头附近的逆向速度和湍流强度峰值几乎没有影响;综合对比,同时带有内稳定器和空气压缩器的新型熔喷气流模头性能最佳,更有利于细化纤维。
中图分类号:
[1] | HAN W L, BHAT G S, WANG X H. Investigation of nanofiber breakup in the melt-blowing process[J]. Industry & Engineering Chemistry Research, 2016, 55(11):3150-3156. |
[2] | 陈诗萍, 陈旻, 魏岑, 等. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(8):179-187. |
CHEN Shiping, CHEN Min, WEI Cen, et al. Structure and functions of medical protective clothing and trend for research and development[J]. Journal of Textile Research, 2020, 41(8):179-187. | |
[3] | 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3):168-174. |
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3):168-174. | |
[4] | 张恒, 甄琪, 刘雍, 等. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(9):28-34. |
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure[J]. Journal of Textile Research, 2019, 40(9):28-34. | |
[5] | HARPHAM A S, SHAMBAUGH R L. Flow field of practical dual rectangular jets[J]. Industry & Engineering Chemistry Research, 1996, 35(10):3776-3781. |
[6] | HARPHAM A S, SHAMBAUGH R L. Velocity and temperature fields of dual rectangular jets[J]. Industry & Engineering Chemistry Research, 1997, 36:3937-3943. |
[7] | WANG X M, KE Q F. Empirical formulas for distributions of air velocity and temperature along the spinline of a dual slot die[J]. Polymer Engineering and Science, 2005, 45(8):1092-1097. |
[8] | XIE S, ZENG Y C. Turbulent air flow field and fiber whipping motion in the melt blowing process: experimental study[J]. Industry & Engineering Chemistry Research, 2012, 51:5346-5352. |
[9] |
XIE S, HAN W L, JIANG G J, et al. Turbulent air flow field in slot-die melt blowing for manufacturing microfibrous nonwoven materials[J]. Journal of Material Science, 2018, 53:6991-7003.
doi: 10.1007/s10853-018-2008-y |
[10] |
KRUTKA H M, SHAMBAUGH R L, PAPAVASSILIOU D V. Analysis of a melt-blowing die: comparison of CFD and experiments[J]. Industrial & Engineering Chemistry Research, 2002, 41(20):5125-5138.
doi: 10.1021/ie020366f |
[11] |
CHEN T, WANG X H, HUANG X B. Modeling the air-jet flow field of a dual slot die in the melt-blowing nonwoven process[J]. Textile Research Journal, 2004, 74(11):1018-1024.
doi: 10.1177/004051750407401114 |
[12] |
XIN S F, WANG X H. Investigation into the effect of the angle of dual slots on an air flow field in melt blowing via numerical simulation[J]. E-Polymers, 2016, 16:337-342.
doi: 10.1515/epoly-2016-0057 |
[13] |
SUN Y F, WANG X H. Optimal geometry design of the melt blowing slot die via the orthogonal array method and numerical simulation[J]. Journal of The Textile Institute, 2011, 102(1):65-69.
doi: 10.1080/00405000903475805 |
[14] |
SUN Y F, WANG X H. Optimization of air flow field of the melt blowing slot die via numerical simulation and genetic algorithm[J]. Journal of Applied Polymer Science, 2010, 115(3):1540-1545.
doi: 10.1002/app.v115:3 |
[15] | 辛三法, 王新厚, 胡守忠. 双槽熔喷工艺中外沿长度对空气流场的影响[J]. 纺织学报, 2015, 36(4):71-75. |
XIN Sanfa, WANG Xinhou, HU Shouzhong. The effect of outer length on air flow field in melt blowing with dual slots was studied via numerical simulation[J]. Journal of Textile Research, 2015, 36(4):71-75. | |
[16] |
WANG Y D, WANG X H. Numerical analysis of new modified melt-blowing dies for dual rectangular jets[J]. Polymer Engineering and Science, 2014, 54(1):110-116.
doi: 10.1002/pen.23536 |
[17] | 孙亚峰. 微纳米纤维纺丝拉伸机理的研究[D]. 上海: 东华大学, 2010: 25-45. |
SUN Yafeng. Investigation of micro nano fiber formation[D]. Shanghai: Donghua University, 2010: 25-45. | |
[18] | 姬长春, 张开源, 王玉栋, 等. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(8):175-180. |
JI Changchun, ZHANG Kaiyuan, WANG Yudong, et al. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(8):175-180. | |
[19] | LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London: Academic Press, 1972: 55. |
[20] |
BANSAL V, SHAMBAUGH R L. On-line determination of diameter and temperature during melt blowing of polypropylene[J]. Industrial & Engineering Chemistry Research, 1998, 37(5):1799-1806.
doi: 10.1021/ie9709042 |
[1] | 贺雅勤, 毕雪蓉, 钱希茜, 阮钧, 郁崇文. 牵伸对纱条条干不匀影响的模拟研究[J]. 纺织学报, 2021, 42(06): 85-90. |
[2] | 刘朝军, 刘俊杰, 丁伊可, 马少锋, 张秀琴, 张建青. 空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能[J]. 纺织学报, 2021, 42(05): 31-37. |
[3] | 阮丽, 孙荣基, 刘基宏, 李永贵. 特殊外观结构赛络花式纱的后区牵伸及成纱结构分析[J]. 纺织学报, 2021, 42(03): 77-81. |
[4] | 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184. |
[5] | 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28. |
[6] | 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38. |
[7] | 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165. |
[8] | 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32. |
[9] | 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102. |
[10] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144. |
[11] | 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20. |
[12] | 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20-25. |
[13] | 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167. |
[14] | 魏艳红, 谢春萍, 刘新金, 苏旭中, 殷高伟. 基于大直径软胶辊的细纱牵伸机制及其应用效果[J]. 纺织学报, 2019, 40(10): 62-67. |
[15] | 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34. |
|