纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 108-114.doi: 10.13475/j.fzxb.20200704107

• 纺织工程 • 上一篇    下一篇

柔性伞衣织物的自由变形折叠建模及其充气机制研究

张思宇1, 余莉1(), 贾贺1,2, 刘鑫1   

  1. 1.南京航空航天大学 飞行器环境控制与生命保障工业和信息化部重点实验室, 江苏 南京 210016
    2.北京空间机电研究所, 北京 100094
  • 收稿日期:2020-07-17 修回日期:2021-03-10 出版日期:2021-07-15 发布日期:2021-07-22
  • 通讯作者: 余莉
  • 作者简介:张思宇(1995—),男,博士生。主要研究方向为柔性织物建模与流固耦合分析。
  • 基金资助:
    国家自然科学基金项目(11972192);江苏省研究生科研与实践创新计划项目(KYCX20_0216);南京航空航天大学研究生拔尖创新人才培养“引航计划”跨学科创新基金项目(KXKCXJJ202001)

Free form deformation modeling method and inflation mechanism of folded canopy fabrics

ZHANG Siyu1, YU Li1(), JIA He1,2, LIU Xin1   

  1. 1. Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
    2. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • Received:2020-07-17 Revised:2021-03-10 Published:2021-07-15 Online:2021-07-22
  • Contact: YU Li

摘要:

为解决冲压翼伞充气耦合计算中柔性伞衣织物的折叠建模这一关键技术难题,根据柔性伞衣真实的物理折叠特点,引入自由变形思想,提出针对多气室柔性伞衣织物的展向折叠建模方法。采用直接约束型曲面变形技术,通过控制节点移动实现曲面变形,基于坐标矩阵变换对柔性伞衣织物进行展向压缩折叠;并用初始应力方法修正几何误差,使折叠模型具有初始本构力学特征。对翼伞柔性伞衣织物建立展向折叠模型,基于任意拉格朗日-欧拉方法进行充气过程的流固耦合计算,得到充气过程中结构动力学变化及非稳态流场的分布情况,与空投实验进行对比分析,证明了基于自由变形的新型柔性伞衣织物折叠建模方法的准确性与可行性。

关键词: 充气式柔性织物, 柔性伞衣织物, 翼伞, 自由变形, 充气机制, 流固耦合, 折叠建模

Abstract:

Folded flexible canopy fabrics of ram-air parachutes modeling is a key problem in the interaction calculation during inflation process. According to physical folding characteristics, a modeling method of folded canopy fabrics was proposed based on free form deformation. The wing surface deformation was achieved by moving control nodes with direct constraint method of free form deformation. The spanwise folding was obtained by coordinate matrix transformation. In order to modify the geometric errors, the initial stress method was introduced to make the folded model with mechanical characteristics. The folded canopy fabrics model of a certain ram-air parachute was established using this method, and the fluid-structure interaction calculation was carried out based on the arbitrary Lagrange-Euler method during inflation process. The three-dimensional shape, stress and unsteady flow field distribution were obtained. The corresponding calculation and airdrop experiment verified the rationality and feasibility of this method.

Key words: inflatable flexible fabric, folded canopy fabric, ram-air parachutes, free form deformation, inflation mechanism, fluid-structure interaction, fold modeling

中图分类号: 

  • TS101.8

表1

伞衣织物与伞绳材料参数"

名称 厚度/m 横截面积/m2 弹性模量/Pa 密度/ (kg·m-3)
伞衣 0.035 4.3×108 533.77
伞绳 9.0×10-6 9.7×1010 462.00

图1

研究思路"

图2

待变形区域和控制点"

图3

控制点截面"

图4

初始应力修正原理"

图5

伞衣织物的真实折叠图"

图6

伞衣初始几何模型"

图7

上下翼面的控制节点及约束"

图8

上下翼面投影变形"

图9

变形后的气室"

图10

伞衣织物展向压缩"

图11

开伞载荷变化"

图12

充气过程结构及流场变化"

[1] MACHIN R A, IACOMINI C S, CERIMELE C J, et al. Flight testing the parachute system for the space station crew return vehicle[J]. Journal of Aircraft, 2001, 38(5):786-799.
doi: 10.2514/2.2854
[2] 史献林, 余莉. 翼伞空中回收系统的研究及其进展[J]. 航天返回与遥感, 2008, 29(1):1-5,10.
SHI Xianlin, YU Li. The study and development of the parafoil mid-air retrieval system[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(1):1-5,10.
[3] BENNETT T, FOX R. Design, development & flight testing of the NASA X-38 7500 ft2 parafoil recovery system[C] //Proceedings of the 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA Press, 2003: 2003-2107.
[4] 夏刚, 程文科, 秦子增. 航天器回收中几种主伞失效案例介绍[J]. 航天返回与遥感, 2002, 23(4):4-8.
XIA Gang, CHENG Wenke, QIN Zizeng. Case study of main parachute malfunction in aerospace recovery[J]. Spacecraft Recovery & Remote Sensing, 2002, 23(4):4-8.
[5] YU L, CHENG H, ZHAN Y N, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2):272-279.
doi: 10.1016/j.cja.2014.02.021
[6] KIM Y, PESKIN C S. 3-D parachute simulation by the im-mersed boundary method[J]. Computers and Fluid, 2009, 38(6):1080-1090.
doi: 10.1016/j.compfluid.2008.11.002
[7] 高兴龙, 张青斌, 高庆玉, 等. 有限质量降落伞充气动力学数值模拟[J]. 国防科技大学学报, 2016, 38(4):185-190.
GAO Xinglong, ZHANG Qingbin, GAO Qingyu, et al. Numerical simulation on finite mass inflation dynamics of parachute[J]. Journal of National University of Defense Technology, 2016, 38(4):185-190.
[8] CHEN M, TANG K. A fully geometric approach for develop-able cloth deformation simulation[J]. The Visual Computer, 2010, 26(6/8):853-863.
doi: 10.1007/s00371-010-0467-5
[9] 潘博, 钟跃崎. 基于二维图像的三维服装重建[J]. 纺织学报, 2020, 41(4):123-128.
PAN Bo, ZHONG Yueqi. Image-based three-dimensional garment reconstruction[J]. Journal of Textile Research, 2020, 41(4):123-128.
[10] CARIGNAN M, YANG Y, THALMANN N M, et al. Dressing ani-mated synthetic actors with complex deformable clothes[C] //Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1992: 99-104.
[11] GUAN P, REISS L, HIRSHBERG D A, et al. Drape: dressing any person[J]. ACM Transactions on Graphics, 2012. DOI: 10.1145/20185520.20185521.
[12] FENG W W, YU Y Z, KIM B U. A deformation transformer for real-time cloth animation[J]. ACM Transactions on Graphics, 2010. DOI: 10.1145/1778765.1778845.
[13] 毛天露, 夏时洪, 朱小龙, 等. 一种基于混合模型的实时虚拟人服装动画方法[J]. 计算机研究与发展, 2010, 47(1):8-15.
MAO Tianlu, XIA Shihong, ZHU Xiaolong, et al. Real-time garment animation based on mixed model[J]. Journal of Computer Research and Development, 2010, 47(1):8-15.
[14] SALAMA M, KUO C P, LOU M. Simulation of deployment dynamics of inflatable structures[J]. AIAA Journal, 2000, 38(12):2277-2283.
doi: 10.2514/2.896
[15] 程涵, 余莉, 李少腾, 等. 折叠降落伞展开过程研究[J]. 航天返回与遥感, 2012, 33(2):1-6.
CHENG Han, YU Li, LI Shaoteng, et al. A study on the opening process of folded parachute[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(2):1-6.
[16] 程涵, 余莉, 张鑫华, 等. 基于IMM修正的降落伞折叠建模方法[J]. 计算机辅助设计与图形学学报, 2013, 25(5):751-757.
CHENG Han, YU Li, ZHANG Xinhua, et al. Folded parachute modeling method based on IMM[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(5):751-757.
[17] GAO X, ZHANG Q, TANG Q . Fluid-structure interaction and flight dynamics analysis of parachute-payload system during uncontrolled airdrop process[J]. Journal of Aerospace Engineering, 2017, 232(13):2499-2512.
[18] 展亚南, 余莉, 杨雪, 等. 空间折叠充气管分段控制展开数值仿真研究[J]. 计算机仿真, 2015, 32(9):99-103,119.
ZHAN Ya'nan, YU Li, YANG Xue, et al. Numerical simulation research on segment controlled deployment of folded space inflatable tube[J]. Computer Simulation, 2015, 32(9):99-103,119.
[19] LIU J J, LONG J, LIANG K, et al. Reverse modeling of complicated folded fabric[J]. Journal of Industrial Textiles, 2016, 46(2):417-435.
doi: 10.1177/1528083715584140
[20] LEE C K, BUCKLEY J E. New technique for parafoil inflation control[J]. Journal of Aircraft, 2000, 37(3):479-483.
doi: 10.2514/2.2622
[21] LIU G Q, XIE G H, CUI Z S. A new approach for folding process modeling of passage airbag[J]. Applied Mechanics and Materials, 2014,635-637:564-567.
[22] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4):151-160.
doi: 10.1145/15886.15903
[23] ZHAO X S, YU L, YANG X, et al. Segmentation mapping and folding method of surfaces of revolution and its applications[J]. Engineering Computations, 2019, 36(4):1305-1322.
doi: 10.1108/EC-06-2018-0271
[24] SOULI M, OUAHSINE A, LEWIN L. ALE formulation for fluid-structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(5/7):659-675.
doi: 10.1016/S0045-7825(99)00432-6
[25] 张思字, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6):1108-1115.
ZHANG Siyu, YU Li, LIU Xin. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6):1108-1115.
[1] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
[2] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[3] 刘宜胜 裘燚斌 吴震宇. 气动折入装置异向射流场中纱线的运动规律[J]. 纺织学报, 2018, 39(07): 122-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!