纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 1-10.doi: 10.13475/j.fzxb.20201001410
• 特约专栏:纺织材料阻燃新技术 • 下一篇
顾伟文1, 王文庆1,2,3, 魏丽菲1,4, 孙晨颖1, 郝聃1, 魏建斐1,2,3, 王锐1,2,3()
GU Weiwen1, WANG Wenqing1,2,3, WEI Lifei1,4, SUN Chenying1, HAO Dan1, WEI Jianfei1,2,3, WANG Rui1,2,3()
摘要:
为探究零维碳纳米材料碳点(CDs)对阻燃聚对苯二甲酸乙二醇酯(FRPET)热力学性能、阻燃性能、力学性能及荧光性能的影响,将对PET具有良好阻燃效果的共聚型阻燃剂2-羧乙基苯基次膦酸(CEPPA)与碳点同时采用原位聚合的方式添加到PET基体中,研究碳点添加量对FRPET各项性能的影响规律。通过极限氧指数(LOI值)、垂直燃烧(UL94)、锥形量热(CONE)等测试分析不同碳点添加量对FRPET的性能影响。结果表明:在碳点添加量为1.50%时,FRPET的LOI值最高可达34%,垂直燃烧级别为V-0级,较只添加CEPPA的FRPET引燃时间变长、热释放速率峰值与平均热释放速率及总热释放量均降低;加入CDs后FRPET的力学性能也有很大改善,且赋予了荧光性能,有益于拓宽FRPET的应用领域。
中图分类号:
[1] | 梁科文, 王锐, 朱志国, 等. 三聚氰胺氰尿酸盐对阻燃PET的影响[J]. 纺织学报, 2012, 33(11):20-26. |
LIANG Kewen, WANG Rui, ZHU Zhiguo, et al. Influence of melamine cyanurate on flame retardancy of poly(ethylene terephthalate)[J]. Journal of Textile Research, 2012, 33(11):20-26. | |
[2] | 张国强, 王锐, 朱志国, 等. 新型抗静电聚酯纤维的制备及其结构性能[J]. 纺织学报, 2013, 34(1):7-11. |
ZHANG Guoqiang, WANG Rui, ZHU Zhiguo, et al. Preparation, structure and properties of new antistatic polyester fiber[J]. Journal of Textile Research 2013, 34(1):7-11. | |
[3] |
FANG Y, LIU X, TAO X. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate[J]. Progress in Organic Coatings, 2019, 134:162-168.
doi: 10.1016/j.porgcoat.2019.05.010 |
[4] |
ZHAO H B, WANG Y Z. Design and synjournal of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017, 38(23):1700451.
doi: 10.1002/marc.v38.23 |
[5] | 王访鹤, 王锐, 魏丽菲, 等. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11):106-112. |
WANG Fanghe, WANG Rui, WEI Lifei, et al. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics[J]. Journal of Textile Research, 2019, 40(11):106-112. | |
[6] |
ŁUKAWSKI D, GRZESKOWIAK W, LEKAWA-RAUS A, et al. Flame retardant effect of lignin/carbon nanotubes/potassium carbonate composite coatings on cotton roving[J]. Cellulose, 2020, 27(12):7271-7281.
doi: 10.1007/s10570-020-03270-y |
[7] |
LEE S, KIM H M, SEONG D G, et al. Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites[J]. Carbon, 2019, 143:650-659.
doi: 10.1016/j.carbon.2018.11.050 |
[8] |
SHABESTARI M E, KALALI E N, GONZÁLEZ V J, et al. Effect of nitrogen and oxygen doped carbon nanotubes on flammability of epoxy nanocomposites[J]. Carbon, 2017, 121:193-200.
doi: 10.1016/j.carbon.2017.05.087 |
[9] |
CHAVALI K S, PETHSANGAVE D A, PATANKAR K C, et al. Graphene-based intumescent flame retardant on cotton fabric[J]. Journal of Materials Science, 2020, 55(29):14197-14210.
doi: 10.1007/s10853-020-04989-6 |
[10] |
ZABIHI O, AHMADI M, LI Q, et al. A sustainable approach to scalable production of a graphene based flame retardant using waste fish deoxyribonucleic acid[J]. Journal of Cleaner Production, 2020, 247:119150.
doi: 10.1016/j.jclepro.2019.119150 |
[11] |
ZHOU K, GAO R. The influence of a novel two dimensional graphene-like nanomaterial on thermal stability and flammability of polystyrene[J]. Journal of Colloid and Interface Science, 2017, 500:164-171.
doi: 10.1016/j.jcis.2017.04.018 |
[12] |
YU R, LIU J, GAO D, et al. Striking effect of nanosized carbon black modified by grafting sodium sulfonate on improving the flame retardancy of polycarbonate[J]. Composites Communications, 2020, 20:100359.
doi: 10.1016/j.coco.2020.100359 |
[13] |
CHEN Q, WEN X, CHEN H, et al. Study of the effect of nanosized carbon black on flammability and mechanical properties of poly(butylene succinate)[J]. Polymers for Advanced Technologies, 2015, 26(2):128-135.
doi: 10.1002/pat.3431 |
[14] | 魏丽菲, 王锐. 碳基纳米材料在聚合物阻燃中的研究进展[J]. 高分子材料科学与工程, 2019, 35(9):169-176. |
WEI Lifei, WANG Rui. Progress in carbon-based nanomaterials in flame retardant polymers[J]. Polymer Materials Science and Engineering, 2019, 35(9):169-176. | |
[15] |
GAO D, ZHAO H, CHEN X, et al. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms[J]. Materials Today Chemistry, 2018, 9:103-113.
doi: 10.1016/j.mtchem.2018.06.004 |
[16] |
GUO Y, YANG L, LI W, et al. Carbon dots doped with nitrogen and sulfur and loaded with copper(Ⅱ) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine[J]. Microchimica Acta, 2016, 183(4):1409-1416.
doi: 10.1007/s00604-016-1779-6 |
[17] |
SONG Y, ZHU S, SHAO J, et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(4):610-615.
doi: 10.1002/pola.28416 |
[18] |
LIN L, ZHANG S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chemical Communications, 2012, 48(82):10177-10179.
doi: 10.1039/c2cc35559k |
[19] |
DONG Y, CHEN C, ZHENG X, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. Journal of Materials Chemistry, 2012, 22(18):8764-8766.
doi: 10.1039/c2jm30658a |
[20] |
HE X, LI H, LIU Y, et al. Water soluble carbon nanoparticles: hydrothermal synjournal and excellent photoluminescence properties[J]. Colloids and Surfaces B: Biointerfaces, 2011, 87(2):326-332.
doi: 10.1016/j.colsurfb.2011.05.036 |
[21] |
LI H, HE X, KANG Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26):4430-4434.
doi: 10.1002/anie.200906154 |
[22] |
MITRA S, CHANDRA S, PATHAN S H, et al. Room temperature and solvothermal green synjournal of self passivated carbon quantum dots[J]. RSC Advances, 2013, 3(10):3189.
doi: 10.1039/c2ra23085b |
[23] |
PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemistry of Materials, 2009, 21(23):5563-5565.
doi: 10.1021/cm901593y |
[24] |
CHUN L, LIU W, SUN X, et al. Excitation dependent emission combined with different quenching manners supports carbon dots to achieve multi-mode sensing[J]. Sensors and Actuators B: Chemical, 2018, 263:1-9.
doi: 10.1016/j.snb.2018.02.050 |
[25] |
ATCHUDAN R, EDISON T, ASEER K R, et al. Hydrothermal conversion of magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169:321-328.
doi: 10.1016/j.colsurfb.2018.05.032 |
[26] |
WANG B, MU Y, YIN H, et al. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots[J]. Nanoscale, 2018, 10(22):10650-10656.
doi: 10.1039/C8NR02043D |
[27] |
YE R, XIANG C, LIN J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat Commun, 2013, 4:2943.
doi: 10.1038/ncomms3943 |
[28] |
XIAO D, YUAN D, HE H, et al. Microwave-assisted one-step green synjournal of amino-functionalized fluorescent carbon nitride dots from chitosan[J]. Luminescence, 2013, 28(4):612-615.
doi: 10.1002/bio.v28.4 |
[29] |
YANG Z, XU M, LIU Y, et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate[J]. Nanoscale, 2014, 6(3):1890-1895.
doi: 10.1039/C3NR05380F |
[30] |
WU X, LI Y, YANG S, et al. Discriminative detection of mercury (Ⅱ) and hydrazine using a dual-function fluorescent probe[J]. Luminescence, 2020, 35(5):754-762.
doi: 10.1002/bio.v35.5 |
[31] |
TANG M, REN G, CHAI F. A facile synjournal of magnetic fluorescence Fe3O4-carbon dots for the detection and removal of Hg2+[J]. New Journal of Chemistry, 2020, 44(16):6635-6642.
doi: 10.1039/D0NJ00275E |
[32] |
ZHAO Y, CHEN D, YANG J, et al. Visual and fast detection of trace copper ions using biosensor based on fret[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 217:101-106.
doi: 10.1016/j.saa.2019.03.082 |
[33] |
SUN Y, ZENG X, XIAO Y, et al. Novel dual-function near-infrared Ⅱ fluorescence and PET probe for tumor delineation and image-guided surgery[J]. Chemical Science, 2018, 9(8):2092-2097.
doi: 10.1039/C7SC04774F |
[34] |
ZHENG Z, GENG W C, GAO J, et al. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene[J]. Chemical Science, 2018, 9(8):2087-2091.
doi: 10.1039/C7SC04989G |
[35] |
FENG T, AI X, AN G, et al. Correction to charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency[J]. ACS Nano, 2016, 10(5):5587-5587.
doi: 10.1021/acsnano.6b02794 |
[36] |
FANG S, XIA Y, LV K, et al. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4[J]. Applied Catalysis B: Environmental, 2016, 185:225-232.
doi: 10.1016/j.apcatb.2015.12.025 |
[37] |
SUZUKI K, MALFATTI L, CARBONI D, et al. Energy transfer induced by carbon quantum dots in porous zinc oxide nanocomposite films[J]. The Journal of Physical Chemistry C, 2015, 119(5):2837-2843.
doi: 10.1021/jp510661d |
[38] |
LI Y, ZHANG W, JIANG X, et al. Investigation of photo-induced electron transfer between amino-functionalized graphene quantum dots and selenium nanoparticle and it's application for sensitive fluorescent detection of copper ions[J]. Talanta, 2019, 197:341-347.
doi: 10.1016/j.talanta.2019.01.036 |
[39] |
MA C, ZHU Z, WANG H, et al. A general solid-state synjournal of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications[J]. Nanoscale, 2015, 7(22):10162-10169.
doi: 10.1039/C5NR01757B |
[40] |
KONG B, ZHU A, DING C, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012, 24(43):5844-5848.
doi: 10.1002/adma.201202599 |
[41] | 高建伟, 王锐, 董振峰, 等. 磷氟协同阻燃PET的制备及性能研究[J]. 北京服装学院学报(自然科学版), 2019, 39(2):1-9. |
GAO Jianwei, WANG Rui, DONG Zhenfeng, et al. Preparation and properties of PET with synergistic flame retardant containing phosphorus and fluoride[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2019, 39(2):1-9. | |
[42] | 陈咏, 王颖, 何峰, 等, 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019, 40(10):13-19. |
CHEN Yong, WANG Ying, HE Feng, et al. Kinetics and properties of phosphorus flame retardant copolymerized polyester[J]. Journal of Textile Research, 2019, 40(10):13-19. | |
[43] |
TANG S, WACHTENDORF V, KLACK P, et al. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset[J]. RSC Advances, 2017, 7(2):720-728.
doi: 10.1039/C6RA25070J |
[1] | 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18. |
[2] | 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24. |
[3] | 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30. |
[4] | 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109. |
[5] | 关震宇, 周文乐, 张玉梅, 王华平. 基于钛镁催化剂合成瓶用聚酯的动力学研究[J]. 纺织学报, 2021, 42(03): 64-70. |
[6] | 管斌斌, 李庆, 陈灵辉, 徐宇婷, 樊增禄. 基于锆-有机骨架的印染废水中Cr(VI)的荧光检测[J]. 纺织学报, 2021, 42(02): 122-128. |
[7] | 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21. |
[8] | 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9. |
[9] | 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6. |
[10] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[11] | 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15. |
[12] | 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26. |
[13] | 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98. |
[14] | 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8. |
[15] | 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19. |
|