纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 101-107.doi: 10.13475/j.fzxb.20201007707

• 纺织工程 • 上一篇    下一篇

循环加载处理对聚氯乙烯涂层膜材料蠕变性能的影响

汪泽幸(), 李帅, 谭冬宜, 孟硕, 何斌   

  1. 湖南工程学院 纺织服装学院, 湖南 湘潭 411104
  • 收稿日期:2020-10-29 修回日期:2021-03-08 出版日期:2021-07-15 发布日期:2021-07-22
  • 作者简介:汪泽幸(1982—),男,副教授,博士。主要研究方向为产业用纺织品。E-mail: zexing.wang@gmail.com
  • 基金资助:
    湖南省教育厅重点科学研究项目(20A111)

Effect of cyclic loading treatment on creep behavior of polyvinyl chloride coated membrane

WANG Zexing(), LI Shuai, TAN Dongyi, MENG Shuo, HE Bin   

  1. College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2020-10-29 Revised:2021-03-08 Published:2021-07-15 Online:2021-07-22

摘要:

为深入研究膜材料在受力过程中的蠕变作用机制,以聚氯乙烯涂层膜材料为研究对象,对其历经循环加载过程后的蠕变性能进行测试,分析了循环加载次数、循环峰值应力与循环加载速率对蠕变性能及初始变形保持能力的影响规律。研究结果表明:经不同循环加载过程后的涂层膜材料蠕变机制基本一致,蠕变性能及对初始变形的保持能力不仅受循环加载次数、循环峰值应力的影响,同时还与循环加载速率密切相关;对于聚氯乙烯涂层膜材料,增加循环加载次数、提高循环应力峰值、降低循环加载速率,均有助于提高蠕变过程对初始变形的保持能力,减少膜结构建筑后期维护工作量,但会延长循环加载阶段的耗时,增加施工过程预加张力阶段的工作量。

关键词: 聚氯乙烯, 膜材料, 机织物, 蠕变性能, 循环加载

Abstract:

To further investigate the mechanism of loading process on the creep properties of coated membrane, the creep behavior of polyvinyl chloride (PVC) coated membrane after cyclic loading were evaluated, and the effects of cyclic number, peak cyclic stress and cyclic loading rate on the creep behavior and ability to retain the initial deformation in creep process were also analyzed. The results show that the creep mechanism of the coated membrane after different cyclic loading processes are basically the same, the creep behavior and ability to retain the initial deformation in creep process are governed by cyclic number, peak cyclic stress, and the cyclic loading rate. For the PVC coated membrane, increasing loading cycles, improving cyclic peak stress and decreasing loading rate are beneficial for improving the ability to retain the initial deformation in the creep process,and for reducing the maintenance workload of the membrane structure during its service time. However, it would prolong the cyclic loading period and increase the workload during the pretension stage in the construction process.

Key words: polyvinyl chloride, membrane material, woven fabric, creep behavior, cyclic loading

中图分类号: 

  • TS101.923

图1

全实验过程的应变-时间曲线"

图2

不同循环加载次数后试样的全蠕变应变曲线"

图3

不同循环加载次数后试样的初始蠕变应变及蠕变应变增量曲线"

图4

相对变形指数与循环加载次数的等时曲线"

图5

不同循环峰值应力作用后试样的全蠕变应变、初始蠕变应变和蠕变应变增量曲线"

图6

相对变形指数与循环峰值应力的等时曲线"

图7

不同循环加载速率下试样的全蠕变应变、初始蠕变应变和蠕变应变增量曲线"

图8

相对变形指数与加载速率的等时曲线"

图9

不同循环加载条件下相对变形指数与处理耗时曲线"

[1] DINH T D, REZAEI A, LAET L D, et al. A new elasto-plastic material model for coated fabric[J]. Engineering Structures, 2014, 71(71):222-233.
doi: 10.1016/j.engstruct.2014.04.027
[2] KIM K J, YU W R, KIM M. Anisotropic creep modeling of coated textile membrane using finite element analysis[J]. Composites Science and Technology, 2008, 68(7/8):1688-1696.
doi: 10.1016/j.compscitech.2008.02.011
[3] 孟雷, 吴明儿. 建筑用PTFE 膜材应力松弛和徐变性能研究[J]. 建筑材料学报, 2012, 15(2):206-210.
MENG Lei, WU Minger. Study on stress relaxation and creep properties of PTFE membrane[J]. Journal of Building Materials, 2012, 15(2):206-210.
[4] 侯佳佳, 陈南梁, 蒋金华, 等. 涤纶高密双轴向经编增强PVC膜材粘弹性本构关系[J]. 玻璃钢/复合材料, 2019(12):11-17.
HOU Jiajia, CHEN Nanliang, JIANG Jinhua, et al. Viscoelastic constitutive relations of high stitch density biaxial warp knitted fabric reinforced PVC[J]. Fiber Reinforced Plastics/Composites, 2019(12):11-17.
[5] 张营营, 许珊珊, 徐俊豪, 等. 聚四氟乙烯膜材黏弹性本构关系[J]. 建筑结构学报, 2016, 37(6):245-252.
ZHANG Yingying, XU Shanshan, XU Junhao, et al. Viscoelastic constitutive relations of polytetra fluoroethy-lene coated fabrics[J]. Journal of Building Structures, 2016, 37(6):245-252.
[6] 许珊珊. PTFE涂层织物膜材的黏弹性性能研究[D]. 徐州:中国矿业大学, 2017:22-60.
XU Shanshan. Viscoelastic properties of PTFE coated fabrics[D]. Xuzhou: China University of Mining and Technology, 2017:22-60.
[7] 吴明儿, 慕仝, 刘建明. ETFE薄膜循环拉伸试验及徐变试验[J]. 建筑材料学报, 2008, 11(6):690-694.
WU Minger, MU Tong, LIU Jianming. Cycle loading and creep testes of ETFE foil[J]. Journal of Building Materials, 2008, 11(6):690-694.
[8] YU W R, KIM M S, LEE J S. Modeling of anisotropic creep behavior of coated textile membranes[J]. Fibers and Polymers, 2006, 7(2):123-128.
doi: 10.1007/BF02908256
[9] 邹宗勇. 建筑膜材力学性能研究[D]. 杭州: 浙江理工大学, 2010:45-52.
ZOU Zongyong. The study on the mechanical properties of architectural membrane materials[D]. Hangzhou: Zhejiang Sci-Tech University, 2010:45-52.
[10] 汪泽幸, 何斌, 陈妍, 等. 损伤条件下聚氯乙烯涂层膜结构材料拉伸蠕变特性[J]. 纺织学报, 2017, 38(10):57-64.
WANG Zexing, HE Bin, CHEN Yan, et al. Tensile creep characteristics of polyvinyl chloride coated membrane material with damage[J]. Journal of Textile Research, 2017, 38(10):57-64.
[11] 张伍连, 丁辛, 杨旭东. PVC涂层膜材料不同应力下非线性蠕变特性的预测[J]. 工程力学, 2012, 29(8):339-345.
ZHANG Wulian, DING Xin, YANG Xudong. A prediction method of nonlinear behavior of PVC coated fabric membrane at different stresses[J]. Engineering Mechanics, 2012, 29(8):339-345.
[12] SCHIESSEL H, METZLER R, BLUMEN A, et al. Generalized viscoelastic models: their fractional equations with solutions[J]. Journal Physics (A): Mathematical and General, 1995, 28(23):6567-6584.
[13] 汪泽幸, 刘超, 何斌, 等. 聚氯乙烯涂层膜材料非线性蠕变性能预测[J]. 纺织学报, 2018, 39(10):68-73.
WANG Zexing, LIU Chao, HE Bin, et al. Nonlinear creep performance prediction of polyvinyl chloride coated membrane[J]. Journal of Textile Research, 2018, 39(10):68-73.
[14] 陈守辉. 机织建筑膜材料拉伸性能研究[D]. 上海:东华大学, 2008: 19-20.
CHEN Shouhui. Tensile performance of woven membrane materials under uni-axial,bi-axial and multi-axial load[D]. Shanghai: Donghua Unversity, 2008: 19-20.
[15] 王利钢, 陈务军, 高成军. 纬向弓曲率对蒙皮膜材力学性能影响的试验分析[J]. 东华大学学报(自然科学版), 2015, 41(2):155-161.
WANG Ligang, CHEN Wujun, GAO Chengjun. Experimental analysis of the bow and bias filling effect on the mechanical properties of envelope fabric[J]. Journal of Donghua University (Natural Science), 2015, 41(2):155-161.
[16] 张营营, 张其林, 周传志. 温度对PTFE膜材料力学性能的影响[J]. 建筑材料学报, 2012, 15(4):478-483.
ZHANG Yingying, ZHANG Qilin, ZHOU Chuanzhi. Effects of temperature on mechanical properties of PTFE coated fabrics[J]. Journal of Building Materials, 2012, 15(4):478-483.
[17] AMBROZIAK A, KLOSOWSKI P. Mechanical properties of polyvinyl chloride-coated fabric under cyclic tests[J]. Journal of Reinforced Plastics and Composites, 2014, 33(3):225-234.
doi: 10.1177/0731684413502858
[18] AMBROZIAK A. Mechanical properties of PVDF-coated fabric under tensile tests[J]. Journal of Polymer Engineering, 2014, 35(4):377-390.
doi: 10.1515/polyeng-2014-0087
[19] CHEN J, CHEN W, ZHANG D. Experimental study on uniaxial and biaxial tensile properties of coated fabric for airship envelopes[J]. Journal of Reinforced Plastics and Composites, 2014, 33(7):630-647.
doi: 10.1177/0731684413515540
[20] 陈康, 甘宇, 姬洪, 等. HMLS聚酯工业丝蠕变性能测试分析[J]. 产业用纺织品, 2019, 37(2):31-38.
CHEN Kang, GAN Yu, JI Hong, et al. Measurement and analysis on the creep properties of HMLS PET industrial yarns[J]. Technical Textiles, 2019, 37(2):31-38.
[1] 黄锦波, 祝成炎, 张红霞, 洪兴华, 周志芳. 基于剑杆织机改造的三维间隔机织物工艺设计[J]. 纺织学报, 2021, 42(06): 166-170.
[2] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
[3] 刘沐黎, 袁理, 杨亚莉, 刘军平, 龚雪, 鄢煜尘. 色纺机织物组织结构对其呈色特性的影响[J]. 纺织学报, 2020, 41(09): 45-53.
[4] 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20.
[5] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[6] 武鲜艳, 申屠宝卿, 马倩, 金利民, 张威, 谢胜. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(08): 32-38.
[7] 马颜雪, 王世娜, 李毓陵, 温润. 方格立衬结构机织物的一次成形设计实践[J]. 纺织学报, 2020, 41(06): 42-47.
[8] 金诗怡, 周赳. 具有双层效果的提花-印花-剪花织物的设计[J]. 纺织学报, 2020, 41(06): 48-54.
[9] 王旭, 杜增锋, 王翠娥, 倪庆清, 刘新华. 贯穿正交机织物结构的参数化三维建模[J]. 纺织学报, 2019, 40(11): 57-63.
[10] 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72.
[11] 汪泽幸, 朱文佳, 何斌, 刘超. 单轴多级循环加载下聚氯乙烯膜材料的力学行为与能量耗散[J]. 纺织学报, 2019, 40(06): 20-26.
[12] 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[13] 唐文君, 彭明华, 向中林, 邵冬燕, 倪佳东, 许长海. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019, 40(02): 125-129.
[14] 刘赛, 郑冬明, 潘行星, 刘贵, 杜赵群. 交叉螺旋结构拉胀纱线及其织物的成形与表征[J]. 纺织学报, 2019, 40(02): 26-29.
[15] 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!