纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 102-108.doi: 10.13475/j.fzxb.20200909007

• 染整与化学品 • 上一篇    下一篇

3D打印柔性服装面料的负离子功能整理及其性能

杨露1, 薛涛1(), 孟家光1,2, 杨豆豆3   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点 实验室, 陕西 西安 710048
    3.西安工程大学 陕西省2011产业用纺织品协同创新中心, 陕西 西安 710048
  • 收稿日期:2020-09-30 修回日期:2021-04-06 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 薛涛
  • 作者简介:杨露(1996—),女,硕士生。主要研究方向为功能性3D打印纺织材料与制品。
  • 基金资助:
    国家支撑计划项目(2012BAF13B03);陕西省科技统筹创新工程项目(2014SZS13-Z10)

Anion functional finish and properties of 3D printed flexible garment fabrics

YANG Lu1, XUE Tao1(), MENG Jiaguang1,2, YANG Doudou3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Materials and Products, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. 2011 Shaanxi Province Technical Textile Collaborative Innovational Center, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2020-09-30 Revised:2021-04-06 Published:2021-08-15 Online:2021-08-24
  • Contact: XUE Tao

摘要:

为使3D打印柔性服装面料获得良好持久的负离子释放效果,满足3D打印柔性服装功能化的需求,采用涂层法对3D打印柔性面料进行纳米负离子功能整理。探讨了负离子整理剂质量分数和涂覆量对面料释放负离子数量的影响,确定了最佳整理工艺:负离子整理剂中电气石粉体质量分数为2.5%,涂覆量为300 mg/m2。结果表明:经纳米负离子整理剂整理后的3D打印柔性面料平均负离子释放量为2 492个/cm3,水洗15次后面料的负离子释放量为2 331个/cm3,耐久性良好,且整理后面料的柔韧性和耐磨性显著提高。纳米负离子整理使3D打印柔性面料在具备功能性的同时提升了服用性能,实现了个性化和功能化的统一。

关键词: 3D打印柔性面料, 电气石, 纳米负离子, 涂层法, 负离子释放量, 功能整理, 负离子纺织品

Abstract:

In order to make 3D printed flexible garment fabrics obtain good and lasting anion release effect and meet the functional requirements for the 3D printed flexible garment, nano anion functional finishing of a 3D printed flexible fabric was carried out using the coating method. The optimal the mass fraction of the tourmaline powder and coating amount of the anionic finishing process was found to be 2.5% and 300 mg/m2 respectively. It is found that the average concentration of anions released from the 3D printed flexible fabric finished with nano anion finishing agent was 2 492 n/cm3, and after 15 washing cycles, the anion release of the fabric was 2 331 n/cm3, indicating good durability. The flexibility and wear resistance of the finished 3D printed flexible fabric were significantly improved. Nano anion finishing makes the 3D printed flexible fabric functional and improves the wearability at the same time, achieving the combination of personalization and functionalization for garment and fashion application.

Key words: 3D printed flexible fabric, tourmaline, nano anion, coating method, concentraton of anion release, functional finishing, anion textiles

中图分类号: 

  • TS195.5

图1

负离子产生机制"

表1

纺织品负离子发生量的评价标准"

负离子发生量/(个·cm-3) 评价效果
>1 000 负离子发生量较高
550~1 000 负离子发生量中等
<550 负离子发生量偏低

图2

电气石粉体质量分数对负离子发生量的影响"

图3

整理剂涂覆量对负离子发生量的影响"

图4

整理前后3D打印柔性服装面料的表面形貌"

表2

负离子整理纺织品负离子发生量对比"

负离子纺
织品
负离子发生量/
(个·cm-3)
应用领域 文献
纯棉针织物 2 689 服装类 [25]
纯棉机织物 2 768 服装类 [26]
涤纶针织物 2 984 纺织服装 [27]
涤纶织物 2 810 空气净化装饰织物 [28]
涤纶织物 3 200 抑尘网 [29]
3D打印面料 2 492 纺织服装 本文

表3

洗涤不同次数后的负离子发生量"

洗涤次数 负离子发生量/(个·cm-3)
0 2 492
5 2 407
10 2 369
15 2 331

表4

整理前后3D打印柔性面料的平均透湿率和透气率"

处理方法 平均透湿率/(L·m-2·s-1) 透气率/(mm·s-1)
整理前 2 313.45 1 793.00
整理后 628.90 11.01

表5

整理前后3D打印柔性服装面料的硬挺度"

处理方法 伸出长度平均值 弯曲长度平均值
整理前 7.58 3.79
整理后 6.19 3.10

表6

整理前后3D打印柔性服装面料的折皱性能"

处理方法 平均急弹性回复角 平均缓弹性回复角
整理前 140.36 150.54
整理后 138.52 136.40

图5

摩擦次数与面料质量损失的关系"

图6

摩擦次数与面料耐磨指数的关系"

[1] SAMIT C, MANIK C B. 3D printing technology of polymer-fiber composites in textile and fashion industry:a potential roadmap of concept to consumer[J]. Composite Structures, 2020, 248(11):1-10.
[2] WANG Q Q, SUN J Z, YAO Q, et al. 3D printing with cellulose materials[J]. Cellulose, 2018, 25(8):4275-4301.
doi: 10.1007/s10570-018-1888-y
[3] LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufac-turing[J]. Chemical Reviews, 2017, 117(15):212-290.
[4] 程燕婷, 孟家光. 3D打印材料柔性PLA基本性能表征[J]. 纺织导报, 2017(11):109-111.
CHENG Yanting, MENG Jiaguang. Characterization of basic performance of flexible PLA 3D printing mate-rials[J]. China Textile Leader, 2017(11):109-111.
[5] 展宗瑞, 李倩. 3D打印材料PLA改性研究及应用进展[J]. 辽宁化工, 2019, 48(7):678-679.
ZHAN Zongrui, LI Qian. Research and application progress of PLA 3D printing materials[J]. Liaoning Chemical Industry, 2019, 48(7):678-679.
[6] VITHANI K, GOYANES A, JANNIN V, et al. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems[J]. Pharmaceutical Research, 2019, 36(1):1-20.
doi: 10.1007/s11095-018-2525-z
[7] KALIA S, AVEROUS L. Biodegradable and biobased polymers for environmental and biomedical applica-tions[J]. Chemistry in Australia, 2016(35):171-224.
[8] MELNIKOVA R, EHRMANN A, FINSTERBUSCH K. 3D printing of textile-based structures by fused deposition modeling (FDM) with different polymer materials[C]//IOP Conference Series: Materials Science and Engineering. Ningbo: IPO Publishing, 2014:1-7.
[9] 秦文. 负离子针织物的开发[J]. 轻纺工业与技术, 2019, 48(8):4-7.
QIN Wen. Development of anion knitted fabric[J]. Light and Textile Industry and Technology, 2019, 48(8):4-7.
[10] 张凯军, 李青山, 洪伟, 等. 负离子功能纤维及其纺织品的研究进展[J]. 材料导报, 2017, 31(S1):360-362, 373.
ZHANG Kaijun, LI Qingshan, HONG Wei, et al. Research progress in anion functional fiber and textile[J]. Materials Reports, 2017, 31(S1):360-362, 373.
[11] PAVEL C, BARBARA N, KAREL N, et al. Plasma spray coatings of natural ores from structural, mechanical, thermal, and dielectric viewpoints[J]. Coatings, 2019, 10(1):1-16.
doi: 10.3390/coatings10010001
[12] SETKOVA T V, SHAPOVALOV Y B, BALITSKII V S. Experimental growth and structural-morphological characteristics of co-tourmaline[J]. Doklady Earth Sciences, 2009, 424(1):82-84.
doi: 10.1134/S1028334X09010176
[13] SERIFE S, ESRA K. Production and characterization of poly(ethylene terephthalate) nanofibrous mat including tourmaline additive[J]. Textile Research Journal, 2016, 86(15):1-10.
[14] YEH J T, HSIUNG H H, WEI W, et al. Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites[J]. Journal of Applied Polymer Science, 2009, 113(2):1097-1110.
doi: 10.1002/app.v113:2
[15] 吴双全. 负离子功能汽车内饰面料的开发及应用[J]. 上海纺织科技, 2020, 48(7):17-19.
WU Shuangquan. Development and application of anion functional fabric for automotive interior[J]. Shanghai Textile Science & Technology, 2020, 48(7):17-19.
[16] 文圆, 黄惠宁, 张国涛, 等. 电气石材料性能与应用研究进展[J]. 陶瓷, 2019(2):17-24.
WEN Yuan, HUANG Huining, ZHANG Guotao, et al. Research progress in the performance and application of tourmaline materials[J]. Ceramics, 2019(2):17-24.
[17] 顾浩. 负离子功能整理在涤纶装饰织物上的应用[J]. 针织工业, 2006(6):41-44.
GU Hao. Application of the anionic functional finishing in polyester decorative fabrics[J]. Knitting Industries, 2006(6):41-44.
[18] 武绍学. 负离子远红外保健整理面料的研制[C]// “润禾杯”第八届全国印染后整理学术研讨会论文集. 北京: 中国纺织工程学会, 2011: 86-89.
WU Shaoxue. Development of anion far infrared health care finishing fabrics[C]// Proceedings of the 8th National Symposium on Printing and Dyeing Finishing of "Run-he Cup". Beijing: China Textile Engineering Society, 2011: 86-89.
[19] LI Y H, HU Y M, LIU Y S, et al. Preparation of tourmaline containing functional co-polymer p (TUC/BA/MMA) and its performances[J]. Soft Materials, 2016, 14(2):57-63.
doi: 10.1080/1539445X.2015.1120750
[20] 杨宏林, 董淑秀, 项伟. 纯棉织物的纳米负氧离子整理[J]. 印染, 2015, 41(16):10-14.
YANG Honglin, DONG Shuxiu, XIANG Wei. Finishing of cotton fabrics with nano negative oxygen ion[J]. China Dyeing & Finishing, 2015, 41(16):10-14.
[21] 邢铁玲, 徐霞, 盛家镛, 等. 纳米负离子汽车内装饰面料的制备及其性能[J]. 纺织学报, 2012, 33(3):78-82.
XING Tieling, XU Xia, SHENG Jiayong, et al. Preparation and properties of nano-anionic automobile interior decorative fabrics[J]. Journal of Textile Research, 2012, 33(3):78-82.
[22] 杨蕾, 刘丽妍. 3D打印技术及材料在服装领域的应用与发展[J]. 针织工业, 2019(10):43-57.
YANG Lei, LIU Liyan. Application and development of 3D printing technology and materials in clothing field[J]. Knitting Industries, 2019(10):43-57.
[23] ZONG Z J, ZHI J J, JIN S L, et al. Observation of spontaneous polarization of tourmaline[J]. Chinese Physics, 2003, 12(2):222-225.
doi: 10.1088/1009-1963/12/2/319
[24] 毕鹏宇, 陈跃华, 李汝勤. 负离子纺织品及其应用的研究[J]. 纺织学报, 2003, 24(6):99-101.
BI Pengyu, CHEN Yuehua, LI Ruqin. Study on anion textiles and its application[J]. Journal of Textile Research, 2003, 24(6):99-101.
[25] 任彩玲, 孟家光, 王吉国. 纯棉织物负离子整理工艺的测试分析[J]. 棉纺织技术, 2011, 39(12):31-34.
REN Cailing, MENG Jiaguang, WANG Jiguo. Test and analyses on negative ions finishing processing of pure cotton fabric[J]. Cotton Textile Technology, 2011, 39(12):31-34.
[26] 朱丽芬. 负离子面料加工工艺研究及服装产品设计[D]. 武汉:武汉纺织大学, 2017:29-34.
ZHU Lifen. The processing technology research of fabric with negative ions and clothing product design[D]. Wuhan:Wuhan Textile University, 2017:29-34.
[27] 程浩南, 何源. 涤纶织物的负离子功能整理[J]. 印染, 2015, 41(14):42-44, 47.
CHENG Haonan, HE Yuan. Negative-ion functional finish of polyester fabric[J]. China Dyeing & Finishing, 2015, 41(14):42-44, 47.
[28] 董飞逸. 负离子空气净化装饰织物的开发与性能研究[D]. 西安:西安工程大学, 2016:47-52.
DONG Feiyi. The development and performance study on negative-ion air-purification decoration fabric[D].Xi'an: Xi'an Polytechnic University, 2016:47-52.
[29] 张凯军. 抑尘网的负离子功能整理方法研究[D]. 秦皇岛:燕山大学, 2018:29-37.
ZHANG Kaijun. Research on the anion functional finishing method of dust suppression netes[D]. Qinhuangdao: Yanshan University, 2018:29-37.
[30] 崔小英. 纺织品透气透湿性测试要求及应用[J]. 纺织检测与标准, 2019, 5(3):30-34.
CUI Xiaoying. Requirements and applications for testing breathability and moisture permeability of textiles[J]. Textile Testing and Standard, 2019, 5(3):30-34.
[31] 阎若思, 王瑞, 刘星. 相变材料微胶囊在蓄热调温智能纺织品中的应用[J]. 纺织学报, 2014, 35(9):155-164.
YAN Ruosi, WANG Rui, LIU Xing. Application of microencapsulated phase-change materials in intelligent heat-storage and thermo-regulated textile[J]. Journal of Textile Research, 2014, 35(9):155-164.
[1] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[2] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[3] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[4] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[5] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[6] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[7] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[8] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能[J]. 纺织学报, 2020, 41(01): 102-109.
[9] 王浩, 杜兆芳, 许云辉. 氧化壳聚糖/丝胶复合物的制备及其对棉织物的功能整理[J]. 纺织学报, 2019, 40(11): 119-124.
[10] 吴继辉, 邹婉晴, 汤明竹, 沈小雨, 杨佳敏, 张露芬. 负离子远红外功能织物对乳腺增生大鼠模型的影响[J]. 纺织学报, 2019, 40(06): 68-72.
[11] 关晋平, 匡小慧, 唐人成, 陈国强. 氯化铁对多巴胺改性蚕丝织物的功能整理[J]. 纺织学报, 2019, 40(02): 130-134.
[12] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[13] 高党鸽 李亚娟 吕斌 马建中. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018, 39(08): 171-178.
[14] 郑君红 李亮 刘让同 张丹. 羊毛角蛋白的制备及其对涤纶织物的整理[J]. 纺织学报, 2018, 39(03): 92-97.
[15] 朱维维 肖红 施楣梧. 超临界二氧化碳流体辅助下的纺织品整理技术研究进展[J]. 纺织学报, 2017, 38(11): 177-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!