纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 109-114.doi: 10.13475/j.fzxb.20201001006

• 染整与化学品 • 上一篇    下一篇

超疏水棉织物制备及其在油水过滤分离中应用

李维斌, 张程, 刘军()   

  1. 江苏大学 环境与安全工程学院, 江苏 镇江 212000
  • 收稿日期:2020-10-06 修回日期:2021-05-11 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 刘军
  • 作者简介:李维斌(1976—),男,副教授,博士。主要研究方向为水处理技术。
  • 基金资助:
    江苏省交通运输科技成果转化项目(2018Y29)

Preparation of superhydrophobic coated cotton fabrics for oil-water separation

LI Weibin, ZHANG Cheng, LIU Jun()   

  1. School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212000, China
  • Received:2020-10-06 Revised:2021-05-11 Published:2021-08-15 Online:2021-08-24
  • Contact: LIU Jun

摘要:

针对目前超疏水材料表面耐久性较差的问题,将十八胺和十二烷基三甲氧基硅烷改性的SiO2颗粒与聚二甲基硅烷的混合溶液浸涂到棉织物表面制备超疏水棉织物,对其化学成分、表面形貌、接触角、机械耐久性、化学稳定性和油水分离性能进行测试与表征。结果表明:当聚二甲基硅烷添加量为1.0 mL,改性SiO2颗粒添加3.0 g时,棉织物展现出良好的超疏水性,与水滴的静态接触角为164.5°,其在机械磨损和酸碱环境下表现出良好的稳定性;用超疏水棉织物作为过滤材料,其油水分离效率达90%以上。该超疏水棉织物坚固、环保,易于制造,在油水分离领域具有广阔的应用前景。

关键词: 超疏水织物, 油水分离, 棉织物, 二氧化硅, 聚二甲基硅烷

Abstract:

Aiming at the poor durability of superhydrophobic material surfaces, a durable superhydrophobic coating on cotton fabrics has been fabricated by immersing the fabrics into a solution consisting of SiO2 particles modified by octadecylamine and dodecyltrimethoxyl, and polydimethylsilane. The chemical composition, surface morphology, contact angle, mechanical durability, chemical stability and oil-water separation performance of superhydrophobic cotton fabric were tested and characterized. The results show that when the addition of polydimethylsilane is 1.0 mL and the amount of modified SiO2 is 3.0 g, the obtained fabric exhibits excellent superhydrophobic property with a water contact angle of 164.5°. Superhydrophobic cotton fabric is proven to be resistant to mechanical abrasion and acidic and alkaline attacks. In addition, the practical application of the modified fabric for oil-water separation is also demonstrated with a high separation efficiency above 90%. The superhydrophobic cotton fabric developed in this research is strong, environmentally friendly, easy to manufacture, and has broad application prospects in the field of oil-water separation.

Key words: superhydrophobic fabric, oil-water separation, cotton fabric, silica, polydimethylsilane

中图分类号: 

  • TS116

图1

Si O2、ODA-SiO2和ODA-SiO2-DTMS颗粒的傅里叶红外吸收光谱"

图2

原棉织物和涂覆ODA-SiO2-DTMS颗粒和PDMS的超疏水棉织物的扫描电镜照片(×2 000)"

图3

ODA-SiO2-DTMS和PDMS添加量对接触角的影响"

图4

超疏水棉织物的接触角"

图5

摩擦实验循环50次后超疏水棉织物的表面润湿性"

图6

超疏水棉织物表面接触角随磨损循环次数的变化"

图7

不同pH值条件下超疏水棉织物的接触角"

图8

超疏水棉织物上水滴和油滴的照片"

图9

不同油类的油水分离效率"

图10

超疏水棉织物分离三氯甲烷和水循环10次的油水分离效率"

[1] CARPENTER A. Oil pollution in the north sea:the impact of governance measures on oil pollution over several decades[J]. Hydrobiologia, 2019, 845:109-127.
doi: 10.1007/s10750-018-3559-2
[2] SIDDIQUE H M A, KIANI A K. Industrial pollution and human health:evidence from middle-income coun-tries[J]. Environmental Science and Pollution Research, 2020, 27:12439-12448.
doi: 10.1007/s11356-020-07657-z
[3] XIE Wenlei, HUANG Mengyun. Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid)composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel[J]. Renewable Energy, 2020, 158:474-486.
doi: 10.1016/j.renene.2020.05.172
[4] PAN Zhong, ZHAO Lin, MICHELC Boufadel, et al. Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil[J]. Chemosphere, 2017, 166:246-254.
doi: S0045-6535(16)31242-5 pmid: 27700991
[5] GIACINTUCCI Veronica, MATTIA Carla Di, SACCHETTI Giampiero, et al. Role of olive oil phenolics in physical properties and stability of mayonnaise-like emulsions[J]. Food Chemistry, 2016, 213:369-377.
doi: 10.1016/j.foodchem.2016.06.095
[6] TAN S P, HONG F K, MOHAMMED J K B, et al. Treatment of palm oil mill effluent using combination system of microbial fuel cell and anaerobic membrane bioreactor[J]. Bioresource Technology, 2017, 245:916-924.
doi: 10.1016/j.biortech.2017.08.202
[7] FENG Qi, XU Longjun, LIU Chenglun, et al. Treatment of shale gas fracturing wastewater using microbial fuel cells: mixture of aging landfill leachate and traditional aerobic sludge as catholyte[J]. Journal of Cleaner Production, 2020, 269:121776.
doi: 10.1016/j.jclepro.2020.121776
[8] SI Yifan, DONG Zhichao, JIANG Lei. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science, 2018, 4(9):1102-1112.
doi: 10.1021/acscentsci.8b00504 pmid: 30276243
[9] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582:55-59.
doi: 10.1038/s41586-020-2331-8
[10] 邢彦军, 黄文琦, 沈丽, 等. 棉织物超疏水整理的研究进展[J]. 纺织学报, 2011, 32(5):141-147.
XING Yanjun, HUANG Wenqi, SHEN Li, et al. Study on simple preparation technique of superhydrophobic cotton fabrics[J]. Journal of Textile Research, 2011, 32(5):141-147.
[11] LIN J, ZHENG C, YE W J, et al. A facile dip-coating approach to prepare SiO2/fluoropolymer coating for superhydrophobic and superoleophobic fabrics with self-cleaning property[J]. Journal of Applied Polymer Science, 2015, 132:41458.
[12] JIANG Yunzhe, LIU Chuanyao, LI Yanhong, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. Journal of Membrane Science, 2019, 587:117177.
doi: 10.1016/j.memsci.2019.117177
[13] EUM K Y, PHIRI I, KIM J W, et al. Superhydrophobic and superoleophilic nickel foam for oil/water separa-tion[J]. Korean Journal of Chemical Engineering, 2019, 36:1313-1320.
doi: 10.1007/s11814-019-0308-9
[14] WANG L, GONG Q, ZHAN S, et al. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials, 2016, 28:7729-7735.
doi: 10.1002/adma.201602480
[15] ZHANG He, ZHONG Xin, LU Xin, et al. Preparation of superhydrophobic polybenzoxazine/SiO2 films with self-cleaning and ice delay properties[J]. Progress in Organic Coatings, 2018, 123:254-260.
doi: 10.1016/j.porgcoat.2018.03.026
[16] LEI Lulu, WANG Qing, XU Shuangshuang, et al. Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties[J]. Construction and Building Materials, 2020, 251:118946.
doi: 10.1016/j.conbuildmat.2020.118946
[17] SONG Jinlong, LI Yuxiang, XU Wei, et al. Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J]. Journal of Colloid and Interface Science, 2019, 541:86-92.
doi: S0021-9797(19)30014-1 pmid: 30684753
[18] LOPEZ A B, CAL J, ASUA J M. Highly hydrophobic coatings from waterborne latexes[J]. Langmuir, 2016, 32:7459-7466.
doi: 10.1021/acs.langmuir.6b01072
[19] BAIDYA A, GANAYEE M A, RAVINDRAN S J, et al. Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks[J]. ACS Nano, 2017, 11:11091-11099.
doi: 10.1021/acsnano.7b05170
[20] ZHANG H, HOU C, SONG L, et al. A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating[J]. Chemical Engineering Journal, 2018, 334:598-610.
doi: 10.1016/j.cej.2017.10.036
[21] 袁晓雨, 李伟, 朱振国, 等. 超疏水聚酯滤布的性能及其在油水分离中的应用[J]. 纺织学报, 2017, 38(3):108-13.
YUAN Xiaoyu, LI Wei, ZHU Zhenguo, et al. Performance of superhydrophobic polyester filter cloth and its application in oil/water separation[J]. Journal of Textile Research, 2017, 38(3):108-113.
[22] ZHAO Xia, YU Bo, ZHANG Junping. Transparent and durable superhydrophobic coatings for anti-bioadhe-sion[J]. Journal of Colloid and Interface Science, 2017, 501:222-230.
doi: 10.1016/j.jcis.2017.04.049
[23] CELIK N, ALINDAL S, GOZUTOK Z, et al. Effect of fabric texture on the durability of fluorine-free superhydrophobic coatings[J]. Journal of Coatings Technology and Research, 2020, 17:785-796.
doi: 10.1007/s11998-020-00333-4
[24] WANG Jintao, HAN Fenglan, ZHANG Shoucun. Durably superhydrophobic textile based on fly ash coating for oil/water separation and selective oil removal from water[J]. Separation and Purification Technology, 2016, 164:138-145.
doi: 10.1016/j.seppur.2016.03.038
[1] 郭恒, 黄宏博, 姚金波, 姜会钰, 夏治刚, 王运利. 家庭洗涤对免烫棉织物性能的影响[J]. 纺织学报, 2021, 42(07): 129-136.
[2] 陈小文, 吴伟, 钟毅, 徐红, 毛志平. 棉织物的活性染料低含水率焙蒸固色工艺[J]. 纺织学报, 2021, 42(07): 115-122.
[3] 张华, 张杰, 高燕. 液氨处理对锦纶/棉混纺织物性能的影响[J]. 纺织学报, 2021, 42(06): 128-132.
[4] 赵永芳, 钱建华, 孙丽颖, 彭慧敏, 梅敏. 银纳米线改性棉织物的制备及其性能[J]. 纺织学报, 2021, 42(05): 115-121.
[5] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[6] 马亚男, 沈军炎, 骆晓蕾, 张聪, 尚小磊, 刘琳, KRUCINSKA Izabella, 姚菊明. 高效无卤阻燃棉织物的制备及其结构与性能[J]. 纺织学报, 2021, 42(03): 122-129.
[7] 武守营, 张琳萍, 徐红, 钟毅, 毛志平. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(03): 27-35.
[8] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[9] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[10] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[11] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[12] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[13] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[14] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[15] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!