纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 115-121.doi: 10.13475/j.fzxb.20201200107

• 染整与化学品 • 上一篇    下一篇

芳纶织物基界面光热蒸发材料的制备及其性能

陈亚丽1,2, 赵国猛2, 任李培2, 潘露琪2, 陈贝2, 肖杏芳1,2(), 徐卫林2   

  1. 1.武汉纺织大学 生物质纤维与生态染整湖北省重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
  • 收稿日期:2020-12-01 修回日期:2021-02-09 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 肖杏芳
  • 作者简介:陈亚丽(1996—),女,硕士生。主要研究方向为光热性能纺织品。
  • 基金资助:
    国家自然科学基金面上项目(51773158);生物质纤维与生态染整湖北省重点实验室开放课题资助项目(STRZ2020014);湖北省教育厅指导性项目(B2020071)

Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials

CHEN Yali1,2, ZHAO Guomeng2, REN Lipei2, PAN Luqi2, CHEN Bei2, XIAO Xingfang1,2(), XU Weilin2   

  1. 1. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2020-12-01 Revised:2021-02-09 Published:2021-08-15 Online:2021-08-24
  • Contact: XIAO Xingfang

摘要:

太阳能水蒸发技术作为一种理想的获取淡水资源的方式,具有成本低廉、安全、环保以及太阳能转换效率高等优点。为实现高效稳定的太阳能界面蒸发,以高性能纤维织物芳纶为基底,采用多巴胺原位聚合和活性炭浸涂制备了一种芳纶织物基吸光材料。对改性前后芳纶织物的微观结构、润湿性、吸光性、吸光稳定性和力学性能进行测试与分析,研究芳纶织物基吸光材料蒸发器件的太阳能水蒸发性能。结果表明:经多巴胺和活性炭修饰后芳纶织物的润湿性和吸光性得到显著提高,且具有稳定的吸光性和力学强度;在模拟的一个太阳光强下,芳纶织物基蒸发器件多次循环蒸发实验的蒸发速率稳定在1.81 kg/(m2·h);该蒸发器件可从各类废水中获取洁净水,实现长期稳定的废水处理。

关键词: 芳纶织物, 光热转换, 界面蒸发, 太阳能水蒸发技术, 废水处理

Abstract:

Solar steam generation technology is one of the most promising techniques for obtaining fresh water because of its low cost, safety, environmental friendliness and high efficiency. In order to achieve efficient and stable photothermal performance of absorbers in the solar interfacial water evaporation system, an aramid fabric with high performance was used as the substrate to prepare the polydopamine and activated carbon modified aramid fabric by in-situ polymerization and dip-coating methods. The microstructure, wettability, light absorption, light absorption stability and mechanical properties of the aramid fabric before and after modification were tested and analyzed, and the solar-vapor generation performance was tested by a self-assembled device. The results show that the modified aramid fabric demonstrates a remarkable improvement in wettability and light absorption, together with stable light absorption and mechanical strength. At one-sun intensity, the steam generation rate of the aramid fabric based evaporation device for multiple cycles is stable at 1.81 kg/(m2·h). The evaporation device used for generating freshwater from wastewater could be used in long-term stable wastewater treatment.

Key words: aramid fabric, photothermal conversion, interfacial evaporation, solar steam generation technology, wastewater treatment

中图分类号: 

  • TS190.8

图1

AC-PDA-AF的制备流程图"

图2

太阳能水蒸发装置和蒸发器件工作原理图"

图3

改性前后芳纶织物的SEM照片"

图4

改性前后芳纶织物的水接触角"

图5

太阳辐射光谱和改性前后芳纶织物的光吸收谱图"

图6

超声波处理前后织物的吸光谱图和光学照片"

图7

冲洗前后PDA-AF和AC-PDA-AF的吸光谱图"

图8

改性前后芳纶织物的应力-应变曲线"

图9

纯水、PDA-AF和AC-PDA-AF的热成像图片"

图10

不同样品和AC-PDA-AF循环30次的蒸发速率"

图11

户外蒸发环境及实验效果图"

图12

户外太阳能水蒸发装置图"

[1] RUHI A, MESSAGER M L, OLDEN J D. Tracking the pulse of the earth's fresh waters[J]. Nature Sustainability, 2018, 1(4):198-203.
doi: 10.1038/s41893-018-0047-7
[2] MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2):1500323.
[3] 曲久辉. 物理技术:值得关注的清洁水处理方法[J]. 给水排水, 2014, 50(4):1.
QU Jiuhui. Physical technology:a significant approach to clean water treatment[J]. Water & Wastewater Engineering, 2014, 50(4):1.
[4] 唐朝春, 许荣明. 化学法处理氨氮废水研究进展[J]. 应用化工, 2019, 48(4):878-882.
TANG Chaochun, XU Rongming. Progress in chemical treatment of ammonia nitrogen wastewater[J]. Applied Chemical Industry, 2019, 48(4):878-882.
[5] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271):353.
[6] 季秋玲, 张亮, 吴敌, 等. 太阳能绿色能源的应用及其发展研究[J]. 山西建筑, 2020, 46(8):138-140.
JI Qiuling, ZHANG Liang, WU Di, et al. Application and development study of solar green energy[J]. Shanxi Architecture, 2020, 46(8):138-140.
[7] CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3):683-718.
doi: 10.1016/j.joule.2018.12.023
[8] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12):1031-1041.
doi: 10.1038/s41560-018-0260-7
[9] ZHANG P, LIAO Q, YAO H, et al. Direct solar steam generation system for clean water production[J]. Energy Storage Materials, 2019, 18:429-446.
doi: 10.1016/j.ensm.2018.10.006
[10] DAO V D, CHOI H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges, 2018, 2(2):1700094.
doi: 10.1002/gch2.v2.2
[11] ZHANG Q, XU W, WANG X. Carbon nanocomposites with high photothermal conversion efficiency[J]. Science China Materials, 2018, 61(7):905-914.
doi: 10.1007/s40843-018-9250-x
[12] ZHU M, LI Y, CHEN F, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials, 2018, 8(4):1701028.
doi: 10.1002/aenm.201701028
[13] FANG J, LIU Q, ZHANG W, et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation[J]. Journal of Materials Chemistry A, 2017, 5(34):17817-17821.
doi: 10.1039/C7TA05976K
[14] FANG J, LIU J, GU J, et al. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J]. Chemistry of Materials, 2018, 30(18):6217-6221.
doi: 10.1021/acs.chemmater.8b01702
[15] WU X, CHEN G Y, ZHANG W, et al. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation[J]. Advanced Sustainable Systems, 2017, 1(6):1700046.
doi: 10.1002/adsu.v1.6
[16] 刘捷, 仝胜录, 李小端, 等. 织物基载体在含盐废水蒸发处理中的应用[J]. 纺织学报, 2020, 41(8):81-87.
LIU Jie, TONG Shenglu, LI Xiaoduan, et al. Application of textile in evaporation treatment of saline wastewater[J]. Journal of Textile Research, 2020, 41(8):81-87.
[17] ZHANG Q, XIAO X, WANG G, et al. Silk-based systems for highly efficient photothermal conversion under one sun: portability, flexibility, and dur-ability[J]. Journal of Materials Chemistry A, 2018, 6(35):17212-17219.
doi: 10.1039/C8TA05193C
[18] HAO D, YANG Y, XU B, et al. Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization[J]. Applied Thermal Engineering, 2018, 141:406-412.
doi: 10.1016/j.applthermaleng.2018.05.117
[19] 刘清清, 郭荣辉. 芳纶纤维的改性研究进展[J]. 纺织科学与工程学报, 2020, 37(3):86-93.
LIU Qingqing, GUO Ronghui. Research progress of modification of aramid fiber[J]. Journal of Textile Science & Engineering, 2020, 37(3):86-93.
[20] 刘雪娇, 马存霖, 蔺玉胜, 等. 碳化-氧化废报纸用于太阳能水蒸发[J]. 青岛科技大学学报(自然科学版), 2019, 40(6):48-53.
LIU Xuejiao, MA Cunlin, LIN Yusheng, et al. Carbonized-oxidized waste newspaper for solar water evaporation[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2019, 40(6):48-53.
[21] LIU Y, AI K, LIU J, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials, 2013, 25(9):1353-1359.
doi: 10.1002/adma.v25.9
[22] ZOU Y, CHEN X, YANG P, et al. Regulating the absorption spectrum of polydopamine [J]. Science Advances, 2020, 6(36): eabb4696.
[23] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-430.
doi: 10.1126/science.1147241
[24] LI T, FANG Q, XI X, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2):586-593.
doi: 10.1039/C8TA08829B
[1] 张雨晗, 申国栋, 樊威, 孙润军. 芳纶固载BiOBr复合材料的制备及其光催化降解染色废水[J]. 纺织学报, 2021, 42(08): 128-134.
[2] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[3] 田利强, 梁敏, 龙康, 陈秀清. 膨胀石墨负载纳米铁的制备及其对水中Cr(Ⅵ)及染料的去除[J]. 纺织学报, 2021, 42(06): 133-139.
[4] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[5] 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113.
[6] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[7] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[8] 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134.
[9] 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72.
[10] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[11] 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110.
[12] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
[13] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[14] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[15] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!