纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 84-89.doi: 10.13475/j.fzxb.20201206006

• 纺织工程 • 上一篇    下一篇

复合载荷下不同结构编织人工韧带的有限元分析

卢俊1,2, 王富军1,2, 劳继红1,2, 王璐1,2, 林婧1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2020-12-22 修回日期:2021-04-30 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 林婧
  • 作者简介:卢俊(1996—),男,硕士生。主要研究方向为人工韧带的生物力学性能评价。
  • 基金资助:
    国家重点研发计划项目(2018YFC1106200);高等学校学科创新引智计划资助项目(BP0719035);中央高校基本科研业务费专项基金项目(20D110128/001)

Finite element analysis of braided artificial ligaments of different structures under combined loading

LU Jun1,2, WANG Fujun1,2, LAO Jihong1,2, WANG Lu1,2, LIN Jing1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-12-22 Revised:2021-04-30 Published:2021-08-15 Online:2021-08-24
  • Contact: LIN Jing

摘要:

为探究不同结构编织人工韧带试样在人体正常步态中受到复合载荷加载时的应力分布以及摩擦损耗情况,使用有限元分析法进行数值模拟,基于纱线在空间中的螺旋轨迹以及交织规律,采用MatLab计算空间离散坐标点,并导入至Solidworks中建立试样三维模型。在ABAQUS中赋予试样材料属性、边界条件和接触摩擦属性,最后计算有限单元解。结果表明:有限元模拟曲线和实际测试曲线具有较高的一致性;施加外部载荷时,规则编织试样应力在2个方向的纱线上分布较为均匀,而三向编织试样应力主要集中于轴纱,且需要抵抗更多纱线之间的摩擦作用。该研究可为人工韧带的优化设计提供理论参考。

关键词: 人工韧带, 复合载荷, 三维模型, 有限元分析, 应力集中, 医用纺织品

Abstract:

In order to explore the stress distribution and friction loss of braided artificial ligaments of different structures under combined loading conditions in normal gait, finite element analysis method was used for calculation and analysis. According to the spiral trajectory and interweaving structure of the yarn in space, MatLab was used to calculate the discrete coordinate points in space which was then imported into Solidworks to build three-dimensional models. ABAQUS was used to assign material properties, boundary conditions, contact friction properties and calculate finite element analysis. The results show that the finite element simulation curve and the actual test curve had high agreement. When an external load was applied, the stress of the regular braided specimen was evenly distributed on the yarns in the two directions, while the stress of the tri-axial braided specimen was mainly concentrated on the shaft yarn. Moreover, tri-axial braided specimen was needed to resist more friction between the yarns. The research provides a theoretical reference for the optimal design of artificial ligaments.

Key words: artificial ligament, combined loading, three-dimensional model, finite element analysis, stress concentration, medical textiles

中图分类号: 

  • TS101.8

图1

人工韧带疲劳测试装置结构图"

图2

单次复合载荷加载过程"

图3

2种编织人工韧带试样的三维模型"

图4

2种试样的有限元模拟曲线与实验曲线对比"

表1

2种试样的有限元模拟值和实验值对比"

试样
编号
载荷实
验值/N
载荷模
拟值/N
相对误
差/%
AL24-0 216.58 212.73 -1.78
AL24-6 509.60 469.65 -7.84

图5

2种试样的有限元模拟过程"

图6

2种试样纱线的应力分布情况"

图7

2种试样纱线的平均von mises应力值"

图8

2种试样的摩擦耗散能曲线"

[1] SCHILATY N D, BATES N A, NAGELLI C V, et al. Sex-based differences of medial collateral ligament and anterior cruciate ligament strains with cadaveric impact simulations[J]. Orthopaedic Journal of Sports Medicine, 2018, 6(4):8.
[2] 翟昕元, 林小风. LARS人工韧带重建前交叉韧带: 生物相容性及与骨组织的愈合[J]. 中国组织工程研究, 2017, 21(16):2565-2569.
ZHAI Xinyuan, LIN Xiaofeng. Reconstruction of the anterior cruciate ligament using ligament advanced reinforcement system: its biocompatibility and bone healing[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(16):2565-2569.
[3] TURKI S, MARZOUGUI S, BENA A S. Impact of polyurethane yarns on the mechanical properties of braided artificial ligaments[J]. Journal of The Textile Institute, 2015, 106(9):912-918.
doi: 10.1080/00405000.2014.952964
[4] JEDDA H, BEN S, SAKLI F. The effect of cyclic loading on the mechanical properties of artificial ligaments[J]. Journal of The Textile Institute, 2011, 102(4):332-342.
doi: 10.1080/00405001003771218
[5] GUIDOIN M F, MAROIS Y, BEJUI J, et al. Analysis of retrieved polymer fiber based replacements for the ACL[J]. Biomaterials, 2000, 21(23):2461-2474.
doi: 10.1016/S0142-9612(00)00114-9
[6] GUIDOIN R, PODDEVIN N, MAROIS Y, et al. Mechanisms of failure for anterior cruciate ligament prostheses implanted in humans: a retrospective analysis of 79 surgically excised explants[J]. Polymers & Polymer Composites, 1995, 3(2):79-97.
[7] 张天阳, 丁辛. 机织物顶破过程的有限元分析[J]. 东华大学学报(自然科学版), 2012, 38(6):688-694.
ZHANG Tianyang, DING Xin. Research on bursting behaviours of woven fabrics by finite element analysis method[J]. Journal of Donghua University(Natural Science), 2012, 38(6):688-694.
[8] 靳欢欢, 杜赵群. 平纹织物三点梁弯曲有限元模拟与分析[J]. 东华大学学报(自然科学版), 2016, 42(3):344-349.
JIN Huanhuan, DU Zhaoqun. Three-point bending simulation and analysis of plain woven fabric by finite element method[J]. Journal of Donghua Univer-sity(Natural Science), 2016, 42(3):344-349.
[9] 刘倩楠, 张涵, 刘新金, 等. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(4):44-50.
LIU Qiannan, ZHANG Han, LIU Xinjin, et al. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS[J]. Journal of Textile Research, 2019, 40(4):44-50.
[10] 东华大学. 人工韧带多自由度在线疲劳模拟测试装置及其测试方法: 202011492121.4[P]. 2021-04-09.
Donghua University. Artificial ligament multi-degree-of-freedom online fatigue simulation testing device and method: 202011492121.4[P]. 2021-04-09.
[11] ROLDAN E, REEVES N D, COOPER G, et al. In vivo mechanical behaviour of the anterior cruciate ligament: a study of six daily and high impact activities[J]. Gait & Posture, 2017, 58:201-207.
doi: 10.1016/j.gaitpost.2017.07.123
[12] TAYLOR K A, CUTCLIFFE H C, QUEEN R M, et al. In vivo measurement of ACL length and relative strain during walking[J]. Journal of Biomechanics, 2013, 46(3):478-483.
doi: 10.1016/j.jbiomech.2012.10.031
[13] GAO B, ZHENG N Q. Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking[J]. Clinical Biomechanics, 2010, 25(3):222-229.
doi: 10.1016/j.clinbiomech.2009.11.006
[14] 赵帆. 双重可控式编织自增强型可降解血管支架的设计制备及构效关系[D]. 上海: 东华大学, 2019: 31-39.
ZHAO Fan. Design and fabrication of dual controllable braided self-reinforced bioresorbable cardiovascular stent and its structure-function relationship analysis[D]. Shanghai: Donghua University, 2019: 31-39.
[15] 刘倩楠, 刘新金. 采用ABAQUS的粘胶机织物拉伸力学性能仿真[J]. 纺织学报, 2018, 39(9):39-43.
LIU Qiannan, LIU Xinjin. Tensile mechanical properties simulation of viscose woven fabrics based on ABAQUS[J]. Journal of Textile Research, 2018, 39(9):39-43.
[1] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[2] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
[3] 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73.
[4] 吕常亮, 郝志远, 陈慧敏, 张慧乐, 岳晓丽. 基于均匀化理论的小变形纬编针织物线圈形态有限元分析[J]. 纺织学报, 2021, 42(03): 21-26.
[5] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[6] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[7] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[8] 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72.
[9] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[10] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[11] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[12] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[13] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(09): 191-200.
[14] 武鲜艳, 申屠宝卿, 马倩, 金利民, 张威, 谢胜. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(08): 32-38.
[15] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!