纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 96-101.doi: 10.13475/j.fzxb.20200303406
戴沈华1,2, 翁良2, 李冰艳1, 张建平2, 杨旭红1()
DAI Shenhua1,2, WENG Liang2, LI Bingyan1, ZHANG Jianping2, YANG Xuhong1()
摘要:
为解决目前衬垫材料弹性较差及缺乏功能性的问题,采用化学溶液法合成了纳米ZnO材料,将其分散到聚氨酯(PU)发泡胶液中与非织造聚酯纤维绵基材进行复合,制备出一种功能性发泡复合绵材料。对纳米ZnO的形貌与结构进行表征,测试了复合绵的压陷回弹性能、光催化特性、防紫外线性能及落球回弹性能。结果表明:合成的纳米ZnO是由直径为30 nm、长为5 μm的纳米棒组成的纳米花,单个纳米棒为六方相;复合绵具有不规则的孔洞结构,其落球回弹率最高可达到58.9%;聚氨酯含量越高,复合绵的压陷回弹性越好;添加纳米ZnO后,复合绵在900 min内可将甲基橙完全降解,其紫外线防护系数值随ZnO质量分数的增加而升高,且稳定性好。
中图分类号:
[1] | YIN Xuefeng, LING Tingting, FU Jufen. Study on the molding mechanism of three-dimensional non-woven bra cup[J]. Advanced Materials Research, 2011, 175-176:837-842. |
[2] | 崔海世. 无溶剂型脂肪族聚氨酯合成与性能研究[D]. 长春: 吉林大学, 2008: 39-41. |
CUI Haishi. Study on the preparation and properties of aliphatic polyurethane without impregnant[D]. Changchun: Jilin University, 2008: 39-41. | |
[3] | 阳霞. 低VOC聚氨酯软泡的研究[J]. 聚氨酯工业, 2017, 32(5):45-48. |
YANG Xia. Study on low VOC flexible polyurethane foam[J]. Polyurethane Industry, 2017, 32(5):45-48. | |
[4] | 沈慧芳, 黄建恒. 耐黄变水性聚氨酯分散液的制备和性能[J]. 聚氨酯工业, 2012, 27(2):27-30. |
SHEN Huifang, HUANG Jianheng. Preparation and performance of anti-yellowing waterborne polyurethane dispersion[J]. Polyurethane Industry, 2012, 27(2):27-30. | |
[5] | 朱堂龙, 王黎明, 沈勇, 等. 纳米TiO2对改性棉织物耐久性整理工艺研究[J]. 纺织装饰科技, 2018, 125(2):5-10. |
ZHU Tanglong, WANG Liming, SHEN Yong, et al. Study on durable finishing process of modified cotton fabric with nano-TiO2[J]. Textile Decoration Technology, 2018, 125(2):5-10. | |
[6] | 范鹏, 金轮, 罗芳华, 等. 石墨烯纳米复合涂层在纤维织物表面的制备与应用进展[J]. 表面技术, 2019, 48(6):56-65. |
FAN Peng, JIN Lun, LUO Fanghua, et al. Preparation and application of grapheme nanocomposite coating on fabrics[J]. Surface Technology, 2019, 48(6):56-65. | |
[7] |
LEE Taemim, LEE Wonoh, KIM Sungwoo, et al. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio[J]. Advanced Functional Materials, 2018, 26:6206-6214.
doi: 10.1002/adfm.v26.34 |
[8] | 周颖, 王闯, 朱佳颖, 等. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(9):35-41. |
ZHOU Ying, WANG Chuang, ZHU Jiaying, et al. Preparation of controllable ZnO nanoparticles on surface of nonwovens[J]. Journal of Textile Research, 2019, 40(9):35-41. | |
[9] |
MYDEEN S S, KUMAR R R, SIVAKUMAR R, et al. Graphene quantum dots/ZnO nanocomposite: synjournal, characterization, mechanistic investigations of photocatalytic and antibacterial activities[J]. Chemical Physics Letters, 2020, 761(16):138009.
doi: 10.1016/j.cplett.2020.138009 |
[10] | WANG Sheng, KUANG Panyong, CHANG Bei. ZnO hierarchical microsphere for enhanced photocatalytic activity[J]. Journal of Alloysand Compounds, 2018, 741(15):622-632. |
[11] | 张崇淼, 温银梅, 高敏, 等. TiO2、ZnO和TiO2/ZnO三种氧化物粉体材料的抗菌性能对比[J]. 化工进展, 2018, 37(11):4343-4348. |
ZHANG Chongmiao, WEN Yinmei, GAO Min, et al. Comparative study on the antibacterial properties of TiO2,ZnO and TiO2/ZnO oxide powders[J]. Chemical Industry and Engineering Progress, 2018, 37(11):4343-4348. | |
[12] | 王超, 宋乐, 王佳斌, 等. 纳米氧化锌在纺织行业的应用与研究[J]. 信息记录材料, 2016, 17(4):5-6. |
WANG Chao, SONG Le, WANG Jiabin, et al. Application and research of nanometer zinc oxide in the textile industry[J]. Information Recording Materials, 2016, 17(4):5-6. | |
[13] |
QI Kezhen, CHENG Bei, YU Jiaguo, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds, 2017, 727(15):792-820.
doi: 10.1016/j.jallcom.2017.08.142 |
[14] | 毛翠萍. 纳米功能化蚕丝织物的制备及其在可穿戴领域的应用研究[D]. 重庆: 西南大学, 2016:17-19. |
MAO Cuiping. Nanomaterial-functionalized silk and its application in wearable electronics[D]. Chongqing: Southwest University, 2016: 17-19. | |
[15] | 陈海宏, 江创生, 赖明河, 等. 静电纺丝制备聚合物/无机物复合纳米纤维研究进展[J]. 产业用纺织品, 2012, 30(9):1-5. |
CHEN Haihong, JIANG Chuangsheng, LAI Minghe, et al. Research progress of polymer/inorganic composite nanofiber prepared by electrospinning[J]. Technical Textiles, 2012, 30(9):1-5. | |
[16] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1):1-9. |
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1):1-9. | |
[17] |
KHAN Azam, HUSSAIN Mushtaque, NUR Omer, et al. Fabrication of zinc oxide nanoneedles on conductive textile forharvesting piezoelectric potential[J]. Chemical Physics Letters, 2014, 612(18):62-67.
doi: 10.1016/j.cplett.2014.08.009 |
[18] | 杨骞, 刘琦, 陈群, 等. 瓶状和棒形的纳米ZnO光催化降解甲基橙的研究[J]. 化工新型材料, 2009, 37(5):78-81. |
YANG Qian, LIU Qi, CHEN Qun, et al. Photocatalytic degradation of methyl orange using ZnO nanobottles and nanorods[J]. New Chemical Materials, 2009, 37(5):78-81. |
[1] | 赵永芳, 钱建华, 孙丽颖, 彭慧敏, 梅敏. 银纳米线改性棉织物的制备及其性能[J]. 纺织学报, 2021, 42(05): 115-121. |
[2] | 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148. |
[3] | 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98. |
[4] | 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90. |
[5] | 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14. |
[6] | 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47. |
[7] | 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41. |
[8] | 刘慧 徐英莲. 纳米ZnO整理对蚕丝织物抗紫外线性能的影响[J]. 纺织学报, 2016, 37(07): 104-108. |
[9] | 高党鸽 冯军芳 段羲颖 马建中. 涂料印花用聚丙烯酸酯/纳米ZnO复合乳液的制备及其性能[J]. 纺织学报, 2015, 36(08): 78-83. |
[10] | 陈和春 尹桂波. 双元配体转光剂的合成及其在防紫外线织物中的应用[J]. 纺织学报, 2014, 35(5): 83-0. |
[11] | 赵殿栋;邓炳耀. 负载纳米ZnO非织造材料的制备及其光催化性能[J]. 纺织学报, 2010, 31(12): 23-27. |
[12] | 张素俭;于伟东. 竹原纤维/毛交织花呢的防紫外线性能[J]. 纺织学报, 2008, 29(6): 36-38. |
[13] | 侯大寅;李良飞;魏取福. PET基纳米ZnO溅射成膜及其紫外线通透性能[J]. 纺织学报, 2007, 28(2): 48-51. |
[14] | 夏风林. 经编间隔织物的抗压回弹性研究[J]. 纺织学报, 2003, 24(04): 58-59. |
|