纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 24-30.doi: 10.13475/j.fzxb.20210300607
吴钦鑫, 侯成义(), 李耀刚, 张青红, 秦宗益, 王宏志
WU Qinxin, HOU Chengyi(), LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi
摘要:
针对传统医用防护服的穿着舒适性差、功能单一等问题,采用静电纺丝法制备了具有辐射降温功能的二氧化硅/聚偏氟乙烯(SiO2/PVDF)纳米纤维,采用热压法将SiO2/PVDF纳米纤维与非织造布制成新型防护服面料(SiO2/PVDF-NWF)。测试了SiO2/PVDF纳米纤维的结构和红外光透过率,以及新型防护服面料的穿着舒适性、防护性、辐射降温性能。结果表明:在质量分数为15%的PVDF纺丝液中,当SiO2粒径为2 μm,SiO2与PVDF的质量比为0.15时,SiO2/PVDF纳米纤维的红外光透过率最好;将传统防护服上的部分面料替换为SiO2/PVDF-NWF,测试人员穿着时的服内温度比传统防护服低2 ℃,相对湿度下降5%。此外,在辐射降温防护服面料上集成了血氧、温湿度和定位传感器,构筑了多功能防护系统,其在医疗应急方面具有广阔的应用前景。
中图分类号:
[1] | 韩玲, 郝栋连, 马英博, 等. 非织造医用防护服标准及面料选用[J]. 纺织高校基础科学学报, 2020, 33(1):1-6,14. |
HAN Ling, HE Donglian, MA Yingbo, et al. Standards and fabric selection of nonwoven medical protective clothing[J]. Basic Sciences Journal of Textile Universities, 2020, 33(1):1-6,14. | |
[2] | 刘亚, 吴汉泽, 程博闻, 等. 非织造医用防护材料技术进展及发展趋势[J]. 纺织导报, 2017(S1):78-82. |
LIU Ya, WU Hanze, CHENG Bowen, et al. Technological progress and developing trends of nonwoven medical protective materials[J]. China Textile Leader, 2017(S1):78-82. | |
[3] | 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机理及其影响因素的研究进展[J]. 高分子通报, 2020(8):1-22. |
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Polymer Bulletin, 2020(8):1-22. | |
[4] | 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3):168-174. |
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3):168-174. | |
[5] |
SUJA P S, RESHMI C R, SAGITHA P, et al. Electrospun nanofibrous membranes for water purification[J]. Polymer Reviews, 2017, 57(3):467-504.
doi: 10.1080/15583724.2017.1309664 |
[6] |
SUN Q, LEUNG W W F. Enhanced nano-aerosol loading performance of multilayer PVDF nanofiber electret filters[J]. Separation and Purification Technology, 2020, 240:116606.
doi: 10.1016/j.seppur.2020.116606 |
[7] |
ZHAI Y, MA Y, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329):1062-1066.
doi: 10.1126/science.aai7899 |
[8] | CAI L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35):e1802152. |
[9] |
FAN S. Thermal photonics and energy applications[J]. Joule, 2017, 1(2):264-273.
doi: 10.1016/j.joule.2017.07.012 |
[10] |
RAMAN A P, ANOMA M A, ZHU L, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528):540-544.
doi: 10.1038/nature13883 |
[11] |
REPHAELI E, RAMAN A, FAN S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 2013, 13(4):1457-1461.
doi: 10.1021/nl4004283 |
[12] |
ZHU C, CHORTOS A, WANG Y, et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors[J]. Nature Electronics, 2018, 1(3):183.
doi: 10.1038/s41928-018-0041-0 |
[13] |
CHEN Z, ZHU L, RAMAN A, et al. Radiative cooling to deep sub-freezing temperatures through a 24h day-night cycle[J]. Nature Communications, 2016, 7:13729.
doi: 10.1038/ncomms13729 |
[14] | 韩玲, 马英博, 胡梦缘, 等. 改善医用一次性防护服热湿舒适性的研究进展[J]. 棉纺织技术, 2020, 48(4):75-78. |
HAN Ling, MA Yingbo, HU Mengyuan, et al. Research progress on improving thermal-wet comfort of single-use protective clothing for medical use[J]. Cotton Textile Technology, 2020, 48(4):75-78. |
[1] | 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45. |
[2] | 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51. |
[3] | 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56. |
[4] | 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63. |
[5] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[6] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[7] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[8] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[9] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[10] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[11] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[12] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[13] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[14] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[15] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
|