纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 24-30.doi: 10.13475/j.fzxb.20210300607

• 特约专栏:智能纤维与制品 • 上一篇    下一篇

辐射降温纳米纤维医用防护服面料及传感系统集成

吴钦鑫, 侯成义(), 李耀刚, 张青红, 秦宗益, 王宏志   

  1. 东华大学 纤维材料改性国家重点实验室, 上海 201620
  • 收稿日期:2021-03-01 修回日期:2021-05-09 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 侯成义
  • 作者简介:吴钦鑫(1997—),男,硕士生。主要研究方向为智能可穿戴材料。
  • 基金资助:
    国家自然科学基金面上项目(52073057);上海市青年科技启明星计划项目(20QA1400300)

Radiative cooling nanofiber medical fabrics and sensor system integration

WU Qinxin, HOU Chengyi(), LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi   

  1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2021-03-01 Revised:2021-05-09 Published:2021-09-15 Online:2021-09-27
  • Contact: HOU Chengyi

摘要:

针对传统医用防护服的穿着舒适性差、功能单一等问题,采用静电纺丝法制备了具有辐射降温功能的二氧化硅/聚偏氟乙烯(SiO2/PVDF)纳米纤维,采用热压法将SiO2/PVDF纳米纤维与非织造布制成新型防护服面料(SiO2/PVDF-NWF)。测试了SiO2/PVDF纳米纤维的结构和红外光透过率,以及新型防护服面料的穿着舒适性、防护性、辐射降温性能。结果表明:在质量分数为15%的PVDF纺丝液中,当SiO2粒径为2 μm,SiO2与PVDF的质量比为0.15时,SiO2/PVDF纳米纤维的红外光透过率最好;将传统防护服上的部分面料替换为SiO2/PVDF-NWF,测试人员穿着时的服内温度比传统防护服低2 ℃,相对湿度下降5%。此外,在辐射降温防护服面料上集成了血氧、温湿度和定位传感器,构筑了多功能防护系统,其在医疗应急方面具有广阔的应用前景。

关键词: 防护服面料, 二氧化硅/聚偏氟乙烯, 静电纺丝, 辐射降温, 多功能防护服

Abstract:

Traditional medical protective clothing offers limited functions and lacks of wear comfort. Accordingly, this research focused on the preparation of radiative cooling silicon dioxide/poly(1,1-difluoroethylene) nanofibers through electrospinning, and the making of nonwoven fabrics using hot pressing to obtain a new protective clothing fabrics (SiO2/PVDF-NWF). The microstructure and infrared transmittance of SiO2/PVDF nanofibers were measure and characterized, and the wearing comfort, protection performance, and radiative cooling effect of the as-obtained SiO2/PVDF-NWF were tested. The results show that with 15% PVDF spinning solution, optimal infrared transmittance of SiO2/PVDF nanofibers is achieved when the SiO2 particle size is 2 μm and the mass ratio of SiO2/PVDF is 0.15. The temperature inside clothes was found 2 ℃ lower than that in the traditional protective clothing and the relative humidity was reduced by 5% after replacing part of the fabric on the traditional protective clothing with SiO2/PVDF-NWF. In addition, the multifunctional protective system is constructed by integrating sensors for blood oxygen, temperature, humidity and positioning on the radiative cooling protective clothing fabrics, offerring a broad application prospect for medical applications.

Key words: protective clothing, silicon dioxide/poly(1,1-difluoroethylene), electrospinning, radiative cooling, multifunctional protective clothing

中图分类号: 

  • TS102.6

图1

不同SiO2粒径下SiO2/PVDF纳米纤维的SEM照片"

图2

不同SiO2粒径的SiO2/PVDF纳米纤维的红外透过率图谱"

图3

不同PVDF质量分数的SiO2/PVDF纳米纤维的SEM照片"

图4

不同PVDF质量分数的SiO2/PVDF纳米纤维红外光谱"

图5

不同SiO2掺杂量的SiO2/PVDF纳米纤维的SEM照片"

图6

不同SiO2掺杂量的SiO2/PVDF纳米纤维的红外光谱"

图7

防护服面料的透气性"

表1

SiO2/PVDF-NWF和M-NWF的透湿率和热阻"

样品 透湿率/(g·m-2·h-1) 热阻/(℃·m2·W-1)
M-NWF 26.762 0.115 9
SiO2/PVDF-NWF 240.658 0.083 8

图8

辐射降温防护服面料性能测试图"

图9

天空辐射降温图"

图10

穿着防护服时体表温湿度变化"

图11

多功能防护服系统示意图"

[1] 韩玲, 郝栋连, 马英博, 等. 非织造医用防护服标准及面料选用[J]. 纺织高校基础科学学报, 2020, 33(1):1-6,14.
HAN Ling, HE Donglian, MA Yingbo, et al. Standards and fabric selection of nonwoven medical protective clothing[J]. Basic Sciences Journal of Textile Universities, 2020, 33(1):1-6,14.
[2] 刘亚, 吴汉泽, 程博闻, 等. 非织造医用防护材料技术进展及发展趋势[J]. 纺织导报, 2017(S1):78-82.
LIU Ya, WU Hanze, CHENG Bowen, et al. Technological progress and developing trends of nonwoven medical protective materials[J]. China Textile Leader, 2017(S1):78-82.
[3] 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机理及其影响因素的研究进展[J]. 高分子通报, 2020(8):1-22.
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Polymer Bulletin, 2020(8):1-22.
[4] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3):168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3):168-174.
[5] SUJA P S, RESHMI C R, SAGITHA P, et al. Electrospun nanofibrous membranes for water purification[J]. Polymer Reviews, 2017, 57(3):467-504.
doi: 10.1080/15583724.2017.1309664
[6] SUN Q, LEUNG W W F. Enhanced nano-aerosol loading performance of multilayer PVDF nanofiber electret filters[J]. Separation and Purification Technology, 2020, 240:116606.
doi: 10.1016/j.seppur.2020.116606
[7] ZHAI Y, MA Y, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329):1062-1066.
doi: 10.1126/science.aai7899
[8] CAI L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35):e1802152.
[9] FAN S. Thermal photonics and energy applications[J]. Joule, 2017, 1(2):264-273.
doi: 10.1016/j.joule.2017.07.012
[10] RAMAN A P, ANOMA M A, ZHU L, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528):540-544.
doi: 10.1038/nature13883
[11] REPHAELI E, RAMAN A, FAN S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 2013, 13(4):1457-1461.
doi: 10.1021/nl4004283
[12] ZHU C, CHORTOS A, WANG Y, et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors[J]. Nature Electronics, 2018, 1(3):183.
doi: 10.1038/s41928-018-0041-0
[13] CHEN Z, ZHU L, RAMAN A, et al. Radiative cooling to deep sub-freezing temperatures through a 24h day-night cycle[J]. Nature Communications, 2016, 7:13729.
doi: 10.1038/ncomms13729
[14] 韩玲, 马英博, 胡梦缘, 等. 改善医用一次性防护服热湿舒适性的研究进展[J]. 棉纺织技术, 2020, 48(4):75-78.
HAN Ling, MA Yingbo, HU Mengyuan, et al. Research progress on improving thermal-wet comfort of single-use protective clothing for medical use[J]. Cotton Textile Technology, 2020, 48(4):75-78.
[1] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[2] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[3] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[4] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[5] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[6] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[7] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[8] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[9] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[10] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[11] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[12] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[13] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[14] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[15] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!