纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 31-38.doi: 10.13475/j.fzxb.20200806008

• 特约专栏:智能纤维与制品 • 上一篇    下一篇

可穿戴足底压力监测系统研究进展

陈足娇1, 张睿1, 卓雯雯1, 张龙琳1,2, 周莉1,2()   

  1. 1.西南大学 蚕桑纺织与生物质科学学院, 重庆 400715
    2.重庆市生物质纤维材料与现代纺织工程技术研究中心, 重庆 400715
  • 收稿日期:2020-08-12 修回日期:2021-05-30 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 周莉
  • 作者简介:陈足娇(1997—),女,硕士生。主要研究方向为服装智能设计与制造。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(XDJK2016C100);重庆市研究生教育教学改革研究项目(yjg173003)

Research progress in wearable plantar pressure monitoring system

CHEN Zujiao1, ZHANG Rui1, ZHUO Wenwen1, ZHANG Longlin1,2, ZHOU Li1,2()   

  1. 1. College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
    2. Chongqing Engineering Technology Research Center of Biomass Fiber and Modern Textile, Chongqing 400715, China
  • Received:2020-08-12 Revised:2021-05-30 Published:2021-09-15 Online:2021-09-27
  • Contact: ZHOU Li

摘要:

为快速推进可穿戴足底压力监测系统的应用,介绍了人体足部的生理结构、足底压力的来源和运动步频。基于可穿戴足底压力监测系统的研究现状,探究了基于织物传感器的一体式压力监测袜的制作材料与响应原理,以及基于柔性电子传感器的集成式压力监测鞋的信息传递模块与工作原理;阐释了可穿戴足底压力监测系统特征点的选取原则,及其在摔倒检测、足疾诊断、足底压力数据库方面的应用。最后讨论了现阶段可穿戴足底压力监测系统在产业化进程中存在的材料性能不佳、无线传输距离短等问题,并提出了基于生物力学、纺织材料、电子通信交叉融合一体化的更完善的应用展望。

关键词: 可穿戴, 足底压力, 压力监测, 柔性压力传感器

Abstract:

Aiming at the promotion of wearable plantar pressure monitoring techniques, physiological structure of human foot, source of plantar pressure and walking frequency were introduced. According to the current research status of wearable plantar pressure monitoring systems, materials and working principles of integrative pressure monitoring socks based on fabric sensor were reviewed, and information transfer module and working principles of composite pressure monitoring shoes based on flexible electronic sensor were also scrutinized. The selection principle of feature points used in wearable plantar pressure monitoring systems and its use for detecting falls, foot disease diagnosis and plantar pressure database establishment were described. The problems were pointed out in poor material performance and short wireless transmission distance in the industrialization process, based on which an application proposal with improved performance based on biomechanics, textile materials and electronic communication was put forward for future development.

Key words: wearable, plantar pressure, pressure monitoring, flexible pressure sensor

中图分类号: 

  • TS943.3

图1

人体足部骨骼结构图"

图2

人体不同运动状态的足部受力分析图"

图3

针织物单位线圈的等效电路图"

图4

机织物压力传感器感应原理图"

图5

压力监测袜及足底压力数据图"

图6

压力监测鞋的结构示意图与工作原理图"

图7

3种柔性压力传感器的结构示意图"

图8

特征位置选取方法与叠加处理"

[1] 董骧, 樊瑜波, 张明, 等. 人体足部生物力学的研究[J]. 生物医学工程学杂志, 2002, 19(1):148-53.
pmid: 11951505
DONG Xiang, FAN Yubo, ZHANG Ming, et al. Studies on biomechanics of human foot: a review[J]. Journal of Biomedical Engineering, 2002, 19(1):148-53.
pmid: 11951505
[2] PATAKY T C, MU T, BOSCH K, et al. Gait recognition: highly unique dynamic plantar pressure patterns among 104 individuals[J]. Journal of the Royal Society Interface, 2011, 9(69):790-800.
doi: 10.1098/rsif.2011.0430
[3] 郭雪莹. 长跑爱好者足部形态及足底压力变化恢复特征研究[D]. 北京: 北京体育大学, 2019: 41-47.
GUO Xueying. Characteristics of foot shape and plantar pressure change and recovery of long-distance runners[D]. Beijing: Beijing Sport University, 2019: 41-47.
[4] NAMIKA M, KOUTATSU N, KEIICHI T, et al. Plantar pressure distribution during standing in women with end-stage hip osteoarthritis[J]. Gait & Posture, 2020, 76:39-43.
doi: 10.1016/j.gaitpost.2019.10.026
[5] GEFEN A, RAVID M, ITZCHAK Y, et al. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications[J]. Biomedicine Engineering, 2000, 12(2):621-630.
[6] ENRIQUE M O, RICARDO B B V, MARTA L I, et al. Foot internal stress distribution during impact in barefoot running as function of the strike pattern[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21(7):471-478.
doi: 10.1080/10255842.2018.1480760
[7] YAM C Y, NIXON M S, CARTER J N. Automated person recognition by walking and running via model-based approaches[J]. Pattern Recognition, 2004, 37(5):1057-1072.
doi: 10.1016/j.patcog.2003.09.012
[8] 金曼. 足底压力分布测量鞋垫的研制[D]. 上海: 东华大学, 2010: 11-12.
JIN Man. A sensing insole for measuring plantar pressure distribution[D]. Shanghai: Donghua University, 2010: 11-12.
[9] WUNDERLICH R E, RICHMOND B G, HATALA K G, et al. The relationship between plantar pressure and footprint shape[J]. Journal of Human Evolution, 2013, 65(1):21-28.
doi: 10.1016/j.jhevol.2013.03.009
[10] DONG K, PENG X, AN J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nature Communications, 2020, 11(1) : 1-11.
doi: 10.1038/s41467-019-13993-7
[11] 翟娅茹, 沈兰萍. 导电纺织品的研究现状及展望[J]. 棉纺织技术, 2019, 47(2):81-84.
ZHAI Yaru, SHEN Lanping. Research and prospect of conductive textiles[J]. Cotton Textile Technology, 2019, 47(2):81-84.
[12] 乐珮珮, 王少伟, 李晓强, 等. 氧化还原一步法制备聚苯胺/银复合导电织物[J]. 纺织学报, 2014, 35(4):37-42.
LE Peipei, WANG Shaowei, LI Xiaoqiang, et al. Preparation of polyaniline/Ag composite conductive fabric via one-step oxidation-reduction reaction[J]. Journal of Textile Reasearch, 2014, 35(4):37-42.
[13] 邱少龙, 苏晓磊, 贾艳, 等. 涤纶导电纤维的制备及性能研究[J]. 应用化工, 2017, 46(2):325-327.
QIU Shaolong, SU Xiaolei, JIA Yan, et al. Preparation and property of polyester conductive fiber[J]. Applied Chemical Industry, 2017, 46(2):325-327.
[14] 李思明, 吴官正, 胡雨洁, 等. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(7):138-144.
LI Siming, WU Guanzheng, HU Yujie, et al. Preparation of pressure distribution monitoring socks and related sensing properties[J]. Journal of Textile Reasearch, 2019, 40(7):138-144.
[15] GUIGNIER C, CAMILLIERI B, SCHMID M, et al. E-knitted textile with polymer optical fibers for friction and pressure monitoring in socks[J]. Sensors, 2019, 19(13):3011.
doi: 10.3390/s19133011
[16] 熊莹, 陶肖明. 智能传感纺织品研究进展[J]. 针织工业, 2019(7):8-12.
XIONG Ying, TAO Xiaoming. Research progress of smart sensing textiles[J]. Knitting Industries, 2019 (7):8-12.
[17] ZHANG H. Flexible textile-based strain sensor induced by contacts[J]. Measurement Science and Technology, 2015, 26(10):105102.
doi: 10.1088/0957-0233/26/10/105102
[18] TAKAMATSU S, KOBAYASHI T, SHIBAYAMA N, et al. Fabric pressure sensor array fabricated with die-coating and weaving techniques[J]. Sensors and Actuators A: Physical, 2012, 184:57-63.
doi: 10.1016/j.sna.2012.06.031
[19] 李琳杰, 赵伟博. 基于PVDF压电传感器的足底压力测量系统[J]. 传感器与微系统, 2018, 37(5):73-75,79.
LI Linjie, ZHAO Weibo. Plantar pressure measurement system based on PVDF piezoelectric sensor[J]. Transducer and Microsystem Technologies, 2018, 37(5):73-75,79.
[20] 闻刚. 穿戴式足底压力动态测量系统的研究[D]. 洛阳: 河南科技大学, 2019: 23-25.
WEN Gang. Research on wearable dynamic measurement system of plantar pressure[D]. Luoyang: Henan University of Science and Technology, 2019: 23-25.
[21] 王宏程, 郎润男, 王芳芳, 等. 压力鞋垫的足-地面反力预测模型与分析[J]. 纺织学报, 2019, 40(11):175-181.
WANG Hongcheng, LANG Ruinan, WANG Fangfang, et al. Prediction model and analysis of foot-ground reaction force based on pressure insole[J]. Journal of Textile Reasearch, 2019, 40(11):175-181.
[22] 宋广玥, 宋智斌, 项忠霞. 基于足底压力传感器的不控制减重比例下步态相位识别[J]. 工程设计学报, 2019, 26(3):260-266.
SONG Guangyue, SONG Zhibin, XIANG Zhongxia. Gait phase recognition under proportion-uncontrolled body weight support based on plantar pressure sensor[J]. Chinese Journal of Engineering Design, 2019, 26(3):260-266.
[23] LEE S J, JEONG D W, KIM D E, et al. Effect of taping therapy and inner arch support on plantar lower body alignment and gait[J]. Korean Journal of Sport Biomechanics, 2017, 27(3):229-238.
doi: 10.5103/KJSB.2017.27.3.229
[24] 林芳富, 李艳, 宋武. 基于因子分析的倒钟摆模型足底压力分布研究[J]. 人类工效学, 2019, 25(2):6-13.
LIN Fangfu, LI Yan, SONG Wu. Selection of wearable smart insoles foot pressure collection points: a review[J]. Chinese Journal of Ergonomics, 2019, 25(2):6-13.
[25] HE J, HU C, WANG X Y. A smart device enabled system for autonomous fall detection and alert[J]. International Journal of Distributed Sensor Networks, 2016, 12(2):2308183.
doi: 10.1155/2016/2308183
[26] MOMOSE Y, SUENAGA T. Gender differences in the occurrence of nonfatal agricultural injuries among farmers in fukuoka[J]. Jpn J Rural Med, 2015, 10:57-64.
[27] KIM I S, LEE K S, KIM K G, et al. Implementation of a real-time fall detection system for elderly Korean farmers using an insole-integrated sensing device[J]. Instrumentation Science & Technology, 2019, 48(1):22-42.
[28] HONG X, CHEN X, CHU J, et al. Multiple diabetic complications, as well as impaired physical and mental function, are associated with declining balance function in older persons with diabetes mellitus[J]. Clin Interv Aging, 2017, 12:189-195.
doi: 10.2147/CIA
[29] PATRY J, BELLEY R, CÔTÉ M, et al. Plantar pressures, plantar forces, and their influence on the pathogenesis of diabetic foot ulcers: a review[J]. Journal of the American Podiatric Medical Association, 2013, 103(4):322-323.
doi: 10.7547/1030322
[30] 卜月丽, 王芳, 张建国, 等. 老年糖尿病患者的足底压力及步态特征[J]. 中国组织工程研究, 2020, 24(5):736-740.
BU Yueli, WANG Fang, ZHANG Jianguo, et al. Plantar pressure and gait characteristics in older adult patients with diabetes[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(5):736-740.
[31] 符霞军, 谢翠华, 蒋娅, 等. 糖尿病足底压力异常患者减压治疗效果分析[J]. 护理学杂志, 2014, 20(5):14-16.
FU Xiajun, XIE Cuihua, JIANG Ya, et al. Decompression treatment for diabetic patients with abnormal plantar foot pressure: effect evaluation[J]. Journal of Nursing Science, 2014, 20(5):14-16.
[32] DAWSON M R. Gait recognition[R]// London: Imperial College of Science, Technology & Medicine, 2002.
[33] 吕杰, 聂智超, 张延海, 等. 基于生物力学数据的足底特征区域划分[J]. 中国组织工程研究, 2020, 24(36):5774-5778.
LV Jie, NIE Zhichao, ZHANG Yanhai, et al. Plantar feature region division based on biomechanical data[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(36):5774-5778.
[34] 张万松, 姚力, 姬瑞军. 贝叶斯判别法在基于足底压力特征个体识别研究中的应用[J]. 中国人民公安大学学报(自然科学版), 2017, 23(4):18-23.
ZHANG Wansong, YAO Li, JI Ruijun. Application of bayesian discriminant method to individual recognition based on foot pressure characteristics[J]. Journal of People's Public Security University of China(Science and Technology), 2017, 23(4):18-23.
[35] 陈欢. 足部矫形器治疗孕妇足痛的可行性探讨[J]. 中国康复, 2019, 34(1):46-49.
CHEN Huan. Study on the feasibility of foot orthosis in the treatment of foot pain in pregnant women[J]. Chinese Journal of Rehabilitation, 2019, 34(1):46-49.
[36] 王雪森, 闫松华, 郑华, 等. 痉挛型脑瘫儿童动态足底压力分布特征研究[J]. 北京生物医学工程, 2019, 38(1):28-35.
WANG Xuesen, YAN Songhua, ZHENG Hua, et al. Characteristics of dynamic plantar pressure during walking in children with spastic cerebral palsy[J]. Beijing Biomedical Engineering, 2019, 38(1):28-35.
[37] BRAUN B J, BUSHUVEN E, HELL R, et al. A novel tool for continuous fracture aftercare-clinical feasibility and first results of a new telemetric gait analysis insole[J]. Injury, 2016, 47(2):490-494.
doi: 10.1016/j.injury.2015.11.004
[38] 程晓颖. 智能假肢的柔性触觉传感器研究[D]. 杭州:浙江大学, 2016: 84-90.
CHEN Xiaoying. Research on flexible tactile sensor for prosthesis hand[D]. Hangzhou: Zhejiang University, 2016: 84-90.
[1] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
[2] 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9.
[3] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[4] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[5] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
[6] 王霁龙, 刘岩, 景媛媛, 许庆丽, 钱祥宇, 张义红, 张坤. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
[7] 刘爱荣, 陈艳敏, 葛凤燕, 蔡再生, 王娟. 纤维基表面增强拉曼基底的研究进展[J]. 纺织学报, 2020, 41(05): 176-183.
[8] 李柽安, 鲁虹. 腰部运动损伤防护智能服装的研发[J]. 纺织学报, 2020, 41(02): 119-124.
[9] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62.
[10] 王杰, 周茗玮, 汪滨, 李秀艳. 纳米纤维膜基柔性压力传感器的优化设计制备[J]. 纺织学报, 2019, 40(11): 32-37.
[11] 王宏程, 郎润男, 王芳芳, 徐丰羽, 申景金. 压力鞋垫的足-地面反力预测模型与分析[J]. 纺织学报, 2019, 40(11): 175-181.
[12] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[13] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173-180.
[14] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[15] 刘亚男 丛杉. 可穿戴技术在人体健康监测中的应用进展[J]. 纺织学报, 2018, 39(10): 175-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!