纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 126-131.doi: 10.13475/j.fzxb.20201101506

• 染整与化学品 • 上一篇    下一篇

还原氧化石墨烯涂层织物的电加热性能

虞茹芳1,2, 洪兴华1,2(), 祝成炎1,2, 金子敏1, 万军民1,2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学桐乡研究院, 浙江 嘉兴 314599
  • 收稿日期:2020-11-09 修回日期:2021-07-18 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 洪兴华
  • 作者简介:虞茹芳(1997—),女,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51803185);浙江省基础公益研究计划(LGF21E030005);中国博士后科学基金第68批面上资助项目(2020M681917);浙江理工大学桐乡研究院博士后基金项目(TYY202013)

Electrical heating properties of fabrics coated by reduced graphene oxide

YU Rufang1,2, HONG Xinghua1,2(), ZHU Chengyan1,2, JIN Zimin1, WAN Junmin1,2   

  1. 1. College of Textiles Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    2. Zhejiang Sci-Tech University Tongxiang Research Institute, Jiaxing, Zhejiang 314599, China
  • Received:2020-11-09 Revised:2021-07-18 Published:2021-10-15 Online:2021-10-29
  • Contact: HONG Xinghua

摘要:

为研究可穿戴织物的电加热性能以及水洗对其性能的影响,通过简单安全可大规模产业化的无转移液相浸涂沉积法在涤纶针织物上沉积并原位还原,制备了还原氧化石墨烯(RGO)涂层织物加热器。借助扫描电子显微镜和傅里叶红外光谱仪对制备的RGO涂层涤纶织物进行表观形态与化学结构分析,同时研究了RGO涂层涤纶织物的导电、力学、电加热性能。结果表明:RGO涂层涤纶织物的电导率为430.9 mS/cm,在10 V电压下可达到65.58 ℃的稳定温度,最大升温速率为3.41 ℃/s;经过2次水洗循环后,在10 V的电压下,RGO涂层涤纶织物可达到43 ℃。本文研究表明,RGO涂层涤纶织物具有优异的电热性能,在医用电热、运动康复等领域具有良好的应用潜力。

关键词: 电加热器, 还原氧化石墨烯, 浸涂法, 针织物, 电加热性能, 智能可穿戴

Abstract:

In order to study the electrical heating properties of wearable fabrics and the influence of washing on their properties, a reduced graphene oxide (RGO) coated fabric heater was prepared through a simple, safe and industrial-scale liquid phase immersion deposition method that by depositing RGO on polyester knitted fabrics and for reduction in situ. The morphology and chemical structure of RGO coated polyester fabric were characterized by scanning electron microscopy and Fourier transform infrared spectrometer. The electrical conductivity, mechanical and electric heating properties of RGO coated polyester fabrics were also measured. The results show that the electrical conductivity of the RGO coated polyester fabric is 430.94 mS/cm. In addition, the RGO coated polyester fabric can reach a stable-state temperature of 65.58 ℃ under a voltage of 10 V, and the maximum heating rate of 3.14 ℃/s. After two cycles of washing, the RGO coated polyester fabric can reach 43 ℃ under 10 V applied voltage. This paper shows that the RGO coated polyester fabric has remarkable electrical heating properties with great application potentials in medical electrothermal, athletic rehabilitation and other fields.

Key words: electric heater, reduced graphene oxide, dip-coating, knitted fabric, electrical heating property, smart wearable

中图分类号: 

  • TS186

图1

RGO涂层涤纶织物的制备过程示意图"

图2

RGO涂层涤纶织物的SEM照片"

图3

涤纶织物、GO涂层涤纶织物和RGO涂层涤纶织物的红外光谱图"

表1

水洗前后RGO涂层涤纶织物的电导率"

试样名称 电导率/(mS·cm-1)
RGO涂层涤纶织物 430.94
2次水洗后的RGO涂层涤纶织物 175.55
4次水洗后的RGO涂层涤纶织物 106.80
8次水洗后的RGO涂层涤纶织物 59.48

图4

涤纶织物及RGO涂层涤纶织物水洗前后应力-应变曲线"

图5

10 V电压下RGO涂层涤纶织物在60 s内的升温和降温的红外热像图"

图6

RGO涂层涤纶织物在不同电压下的温度与时间曲线"

图7

不同电压下RGO涂层涤纶织物的升温/降温速率曲线"

表2

文献中各种织物加热器外加电压、平均加热速率和最高温度的比较"

外加电压/V 平均加热速率/(℃·s-1) 最高温度/℃ 参考文献
12 2.11 126.6 [2]
4.5 2.8 56 [3]
1.6 0.84 63 [4]
6 16.67 50 [12]
7 0.28 134 [13]
6 0.84 100.9 [20]
10 0.88 65.58 本文

图8

水洗前后RGO涂层涤纶织物在10 V下的温度曲线"

[1] SUI D, HUANG Y, HUANG L, et al. Flexible and transparent electrothermal film heaters based on graphene materials[J]. Small, 2011, 7(22):3186-3192.
doi: 10.1002/smll.v7.22
[2] TIAN M, HAO Y, QU L, et al. Enhanced electrothermal efficiency of flexible graphene fabric Joule heaters with the aid of graphene oxide[J]. Materials Letters, 2019, 234:101-104.
doi: 10.1016/j.matlet.2018.09.078
[3] ZHANG L, BAIMA M, ANDREW T L. Transforming commercial textiles and threads into sewable and weavable electric heaters[J]. ACS Applied Materials & Interfaces, 2017, 9(37):32299-32307.
[4] CHEN Z, YU W, DU Z. Study of electrothermal properties of silver nanowire/polydopamine/cotton-based nanocomposites[J]. Cellulose, 2019, 26(10):5995-6007.
doi: 10.1007/s10570-019-02506-w
[5] 李育洲, 张雨凡, 周青青, 等. 二氧化锰/石墨烯/棉织物复合电极的制备及其电化学性能[J]. 纺织学报, 2020, 41(1):96-101.
LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, et al. Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode[J]. Journal of Textile Research, 2020, 41(1):96-101.
[6] 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9):1-7.
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9):1-7.
doi: 10.1177/004051757104100101
[7] 曹机良, 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39(12):84-88.
CAO Jiliang, WANG Chaoxia. Electrical conductivity of silk fabrics finished with graphene[J]. Journal of Textile Research, 2018, 39(12):84-88.
[8] 高硕, 孙润军. 电加热织物的研究与开发[J]. 合成纤维, 2021, 50(2):29-32, 42.
GAO Shuo, SUN Runjun. Research and development of electric heating fabrics[J]. Synthetic Fiber in China, 2021, 50(2):29-32, 42.
[9] CAI G, YANG M, XU Z, et al. Flexible and wearable strain sensing fabrics[J]. Chemical Engineering Journal, 2017, 325:396-403.
doi: 10.1016/j.cej.2017.05.091
[10] SHAO F, BIAN S W, ZHU Q, et al. Fabrication of polyaniline/graphene/polyester textile electrode materials for flexible supercapacitors with high capacitance and cycling stability[J]. Chemistry: An Asian Journal, 2016, 11(13):1906-1912.
doi: 10.1002/asia.v11.13
[11] YU R, ZHU C, WAN J, et al. Review of graphene-based textile strain sensors, with emphasis on structure activity relationship[J]. Polymers, 2021, 13(1):151.
doi: 10.3390/polym13010151
[12] WANG D, LI Di, ZHAO M, et al. Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric[J]. Applied Surface Science, 2018, 454:218-226.
doi: 10.1016/j.apsusc.2018.05.127
[13] TIAN M, DU M, QU L, et al. Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route[J]. RSC Advances, 2017, 7(68):42641-42652.
doi: 10.1039/C7RA08224J
[14] HONG X, YU W, WANG A, et al. Graphite oxide paper as a polarizable electrical conductor in the through-thickness direction[J]. Carbon, 2016, 109:874-882.
doi: 10.1016/j.carbon.2016.08.083
[15] HUMMERS J W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
doi: 10.1021/ja01539a017
[16] HONG X, YU W, CHUNG D. Significant effect of sorbed water on the electrical and dielectric behavior of graphite oxide[J]. Carbon, 2017, 119:403-418.
doi: 10.1016/j.carbon.2017.04.012
[17] 赵静, 张红. 氧化石墨烯的可控还原及表征[J]. 化工进展, 2015, 34(9):3383-3387.
ZHAO Jing, ZHANG Hong. Controllable reduction and characterization of graphene oxide[J]. Chemical Industry and Engineering Progress, 2015, 34(9):3383-3387.
[18] SZABO T, BERKESI O, FORGO P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006, 18(11):2740-2749.
doi: 10.1021/cm060258+
[19] BABAAHMADI V, MONTAZER M. Reduced graphene oxide/SnO2 nanocomposite on PET surface: synjournal, characterization and application as an electro-conductive and ultraviolet blocking textile[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506:507-513.
doi: 10.1016/j.colsurfa.2016.07.025
[20] SADI M S, YANG M, LUO L, et al. Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing[J]. Cellulose, 2019, 26(10):6179-6188.
doi: 10.1007/s10570-019-02526-6
[1] 虞茹芳 洪兴华 祝成炎 金子敏 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. , 2021, 42(10): 0-0.
[2] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
[3] 陈可, 张娣, 吉宜军, 乐荣庆, 苏旭中. 精梳涤纶条含量对涤纶针织物性能的影响[J]. 纺织学报, 2021, 42(09): 66-69.
[4] 袁鲁宁, 王建萍, 张冰洁, 张宇婷, 姚晓凤. 动态调湿控温立体针织物拓扑优化设计[J]. 纺织学报, 2021, 42(09): 70-75.
[5] 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9.
[6] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[7] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[8] 胡旭东, 宋炎锋, 汝欣, 彭来湖. 大小头筒状纬编针织物建模及其线圈长度逆向设计[J]. 纺织学报, 2021, 42(04): 80-84.
[9] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
[10] 吕常亮, 郝志远, 陈慧敏, 张慧乐, 岳晓丽. 基于均匀化理论的小变形纬编针织物线圈形态有限元分析[J]. 纺织学报, 2021, 42(03): 21-26.
[11] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[12] 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168.
[13] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[14] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[15] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!