纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 75-83.doi: 10.13475/j.fzxb.20210107009
胡侨乐1, 边国丰2, 邱夷平2,3, 魏毅2,4, 徐珍珍1()
HU Qiaole1, BIAN Guofeng2, QIU Yiping2,3, WEI Yi2,4, XU Zhenzhen1()
摘要:
为满足轨道交通轻量化需求,实现芳纶蜂窝夹心复合结构在高速列车中的隔声应用,本文通过热压成型法和四传感器阻抗管法分析蜂窝芯规格(密度和边长)、面板材料(碳纤维,玻璃纤维,聚苯硫醚(PPS))和玻璃微珠改性对蜂窝夹芯板隔声性能的影响。结果表明,蜂窝芯密度增大,隔声性能提升,而蜂窝芯边长对隔声性能几乎无影响;在100~2 500 Hz区域,以PPS为内层,碳纤维为外层,玻璃微珠质量分数为5%时蜂窝夹芯板隔声性能最优,平均提高5~8 dB。与目前时速350 km/h动车内采用的标准铝蜂窝夹芯板相比,芳纶蜂窝板不仅具有相近的隔声性能且能实现30%左右减重。因此,芳纶蜂窝夹芯板具有替代标准铝蜂窝成为高速列车新一代隔音地板的应用前景。
中图分类号:
[1] |
ULIANOV C, ONDER A, PENG Q. Analysis and selection of materials for the design of lightweight railway vehicles[J]. Materials Science and Engineering, 2018.DOI: 10.1088/1757-899X/292/1/012072.
doi: 10.1088/1757-899X/292/1/012072 |
[2] | 赵阳宇. 城轨列车轻质地板结构隔声特性分析[D]. 成都:西南交通大学, 2016:50-60. |
ZHAO Yangyu. Analysis on the sound insulation characteristics of light floor of urban rail train[D]. Chengdu:Southwest Jiaotong University, 2016:50-60. | |
[3] | 刘军, 刘奎, 宁博, 等. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12):57-62. |
LIU Jun, LIU Kui, NING Bo, et al. Bending properties of three-dimensional braided composite T-beam at low temperature[J]. Journal of Textile Research, 2019, 40(12):57-62. | |
[4] | 邢淑梅, 刘岩, 张晓排. 高速铁路动车组噪声测试与分析[J]. 噪声与振动控制, 2009, 29(3):79-81. |
XING Shumei, LIU Yan, ZHANG Xiaopai. Noise test and analysis of express train-set[J]. Noise and Vibration Control, 2009(3):79-81. | |
[5] |
SOETA Y, SHIMOKURA R. Survey of interior noise characteristics in various types of trains[J]. Applied Acoustics, 2013, 74(10):1160-1166.
doi: 10.1016/j.apacoust.2013.04.002 |
[6] | 张伟, 陈光雄, 肖新标, 等. 高速列车车内噪声声品质客观评价分析[J]. 铁道学报, 2011, 33(2):13-19. |
ZHANG Wei, CHEN Guangxiong, XIAO Xinbiao, et al. Objective evaluation of sound quality of noises inside high speed train[J]. Journal of the China Railway Society, 2011, 33(2):13-19. | |
[7] | 潘勇. 动车组车内噪声和车外噪声源识别研究[D]. 长沙:中南大学, 2009:42-58. |
PAN Yong. Research on the identification of vehicle interior noise and off-board noise sources[D]. Changsha: Central South University, 2009:42-58. | |
[8] |
QIAO P Z, YANG M J. Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams[J]. Composites Part B: Engineering, 2007, 38:739-750.
doi: 10.1016/j.compositesb.2006.07.014 |
[9] |
AUMJAUD P, SMITH C W, EVANS K E, et al. Multi-objective optimization of viscoelastic damping inserts in honeycomb sandwich structures[J]. Composite Structure, 2015, 132:451-463.
doi: 10.1016/j.compstruct.2015.05.061 |
[10] |
LI Z, CROCKER M J. Effects of thickness and delamination on the damping in honeycomb-foam sandwich beams[J]. Journal of Sound and Vibration, 2006, 294:473-485.
doi: 10.1016/j.jsv.2005.11.024 |
[11] |
HAZIZAN M A, CANTWELL W J. The low velocity impact response of an aluminium honeycomb sandwich structure[J]. Composites Part B: Engineering, 2003, 34:679-687.
doi: 10.1016/S1359-8368(03)00089-1 |
[12] |
CAROLY N, SEEPERSAD C C, MCDOWELL D L, et al. Design of multifunctional honeycomb materials[J]. Aiaa Journal, 2004, 42:1025-1033.
doi: 10.2514/1.9594 |
[13] | DEMPSEY BM, EISELE S, MCDOWELL DL, et al. Heat sink applications of extruded metal honey-combs[J]. International Journal of Heat & Mass Transfer, 2005, 48:527-535. |
[14] |
HE M F, HU W B. A study on composite honeycomb sandwich panel structure[J]. Materials & Design, 2008, 29:709-713.
doi: 10.1016/j.matdes.2007.03.003 |
[15] | 王文健. 铁路客车地板降噪技术初探[J]. 铁道车辆, 2002, 40(12):25-27. |
WANG Wenjian. Discussion of the noise reduction technology for railway passenger car floor[J]. Rolling Stock, 2002, 40(12):25-27. | |
[16] | 韩亮, 阎锋, 刘兴臣. 铁路客车隔声地板的设计及测试结果分析[J]. 铁道车辆, 2002, 40(11):5-7. |
HANG Liang, YAN Feng, LIU Xingchen. Design of the sound insulation floor for railway passenger cars and analysis of the testing results[J]. Rolling Stock, 2002, 40(11):5-7. | |
[17] | 贾玉山, 王东镇, 李乐营. 高速列车用不同类型地板性能对比[J]. 机车车辆工艺, 2017(3):41-42. |
JIA Yushan, WANG Dongzhen, LI Leying. Performance comparison of different types of floors for high speed trains[J]. Locomotive & Rolling Stock Technology, 2017(3):41-42. | |
[18] | 沈艳祥. 高速动车组地板结构隔声实验及仿真研究[D]. 北京:北京交通大学, 2009:16-36. |
SHEN Yanxiang. A study to the floor sound insulation experiment and simulation of the high-speed emu[D]. Beijing: Beijing Jiaotong University, 2009:16-36. | |
[19] | HONG S Y. A study on the sound insulation characteristics of honeycomb panels for offshore plants[J]. Journal of the Korean Society of Marine Environment & Safety, 2017, 23(7):948-955. |
[20] | 孙加平, 张丽荣, 孙海荣, 等. 高速列车夹芯地板结构隔声特性研究[J]. 噪声与振动控制, 2014, 34(4):39-43. |
SUN Jiaping, ZHANG Lirong, SUN Hairong, et al. Sound transmission loss of sandwich panels floor of high-speed trains[J]. Noise and Vibration Control, 2014, 34(4):39-43. | |
[21] | HUANG W C, NG C F, TANG W C. Sound insulation improvement using honeycomb sandwich panels[J]. Applied Acoustics, 1996, 53(1):167-177. |
[22] | 程庆利. 高速列车地板隔声性能的分析与研究[D]. 哈尔滨: 哈尔滨工业大学, 2016:9-26. |
CHENG Qingli. The analysis and study of high-speed train floor's sound insulation property[D]. Harbin: Harbin Institute of Technology, 2016:9-26. | |
[23] | 许晖, 刘涛, 雷烨. 夹芯厚度与真空度对蜂窝夹层隔声特性的影响[J]. 上海交通大学学报, 2017, 51(9):1071-1075. |
XU Hui, LIU Tao, LEI Ye. Effects of core thickness and vacuum degree on sound insulation properties of honeycomb sandwich[J]. Shanghai Jiaotong University, 2017, 51(9):1071-1075. | |
[24] | 吴廷洋. 蜂窝夹层板隔声特性研究与低噪声结构设计[D]. 南昌: 南昌航空大学, 2016:35-39. |
WU Tingyang. Study on the sound insulation characteristics and low noise structure design of honeycomb sandwich panels[D]. Nanchang: Nanchang Hangkong University, 2016:35-39. | |
[25] |
PETERS P, NUTT S, SNEDDON M. Measurements of loss factors of honeycomb sandwich structures[J]. Noise Control Engineering Journal, 2009, 57(1):27.
doi: 10.3397/1.3021417 |
[26] | 顾志武. 皱褶芯材和蜂窝芯材夹层板隔声性能研究[D]. 南京: 南京航空航天大学, 2007:11-21. |
GU Zhiwu. Research on the soundproof of the folder-filler core and honeycomb core sandwich panel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007:11-21. | |
[27] | SAKAMOYO S, SAKUMA Y, et al. Basic Study for the acoustic characteristics of granular material: normal incidence absorption coefficient and transmission loss[J]. Transactions of the Japan society of Mechanical Engineers, 2008, 74(745):2240-2245. |
[28] | 孙卫红, 刘波, 高孔军. 无机填料对功能弹性体吸声性能的影响[J]. 工程塑料应用, 2017, 45(12):112-116. |
SUN Weihong, LIU Bo, GAO Kongjun. Effect of inorganic fillers on underwater acoustic performance of functional elastomers[J]. Engineering Plastics Application, 2017, 45(12):112-116. | |
[29] | 李鸿顺, 钱坤, 曹海建, 等. 整体中空复合材料隔声性能的实验研究[J]. 复合材料学报, 2011, 28(4):167-170. |
LI Hongshun, QIAN Kun, CAO Haijian, et al. Experimental study on the sound insulation property of integrated hollow core sandwich composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4):167-170. | |
[30] | 张树燕. 轻质墙体隔声性能研究[D]. 西安:西安建筑科技大学, 2009:11-20. |
ZHANG Shuyan. Study on the sound insulation property of lightweight wall[D]. Xi'an: Xi'an University of Architecture and Technology, 2009:11-20. | |
[31] | 白攀峰, 柏林元, 何山, 等. 常用吸声材料及吸声机理[J]. 山西化工, 2018, 38(3):40-42. |
BAI Panfeng, BAI Linyuan, HE Shan, et al. Sound absorption materials and sound absorption mecha-nism[J]. Shanxi Chemical Industry, 2018, 38(3):40-42. |
[1] | 胡侨乐 邱夷平 魏毅 边国丰 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. , 2021, 42(10): 0-0. |
[2] | 魏发云, 杨帆, 王海楼, 于斌, 邹学书, 张伟. 改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能[J]. 纺织学报, 2021, 42(10): 53-60. |
[3] | 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82. |
[4] | 檀江涛, 蒋高明, 高哲, 郑培晓. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报, 2021, 42(08): 185-193. |
[5] | 任丽冰, 陈利, 焦伟. 基于一元二次函数的层联机织预制体细观结构表征[J]. 纺织学报, 2021, 42(08): 76-83. |
[6] | 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183. |
[7] | 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191. |
[8] | 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188. |
[9] | 陈小明, 李晨阳, 李皎, 谢军波, 张一帆, 陈利. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(05): 185-192. |
[10] | 乔灿灿, 姜亚明, 齐业雄, 林温妮, 张野. 冲击波在陶瓷增强纬编双轴向多层衬纱织物及机织物复合材料中传递的表征[J]. 纺织学报, 2021, 42(05): 84-89. |
[11] | 姜生, 吉利梅. 聚乙烯醇增强氯化聚乙烯-受阻酚阻尼复合材料的制备及其性能[J]. 纺织学报, 2021, 42(04): 55-61. |
[12] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183. |
[13] | 杨鑫, 邵慧奇, 蒋金华, 陈南梁. 六角形编织物的微观结构模拟[J]. 纺织学报, 2021, 42(04): 85-92. |
[14] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
[15] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
|