纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 92-98.doi: 10.13475/j.fzxb.20201101207

• 染整与化学品 • 上一篇    下一篇

纺织品中大肠杆菌O157:H7的检测方法

李轲1, 张子宏1, 禹建鹰1, 连素梅2, 丁友超3, 谢堂堂4, 傅科杰5, 郭会清1()   

  1. 1.郑州海关, 河南 郑州 450003
    2.石家庄海关, 河北 石家庄 050051
    3.南京海关工业产品检测中心, 江苏 南京 210001
    4.深圳海关工业品检测技术中心, 广东 深圳 518067
    5.宁波检验检疫科学技术研究院, 浙江 宁波 315000
  • 收稿日期:2020-11-26 修回日期:2021-07-19 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 郭会清
  • 作者简介:李轲(1976—),女,高级兽医师,硕士。主要研究方向为消费品生物安全。
  • 基金资助:
    河南省科技攻关项目(182102210226);国家认监委认证认可科技支撑计划项目(2017RJWKJ35);河南省科技攻关计划项目(162102210370)

Method to detect virulence gene rfbE of Escherichia coli O157:H7 in textiles

LI Ke1, ZHANG Zihong1, YU Jianying1, LIAN Sumei2, DING Youchao3, XIE Tangtang4, FU Kejie5, GUO Huiqing1()   

  1. 1. Zhengzhou Customs, Zhengzhou, Henan 450003, China
    2. Shijiazhuang Customs, Shijiazhuang, Hebei 050051, China
    3. Nanjing Customs Industrial Products Testing Center, Nanjing, Jiangsu 210001, China
    4. Shenzhen Customs Industrial Products Testing Technology Center, Shenzhen, Guangdong 518067, China
    5. Ningbo Institute of Inspection Science and Technology, Ningbo, Zhejiang 315000, China
  • Received:2020-11-26 Revised:2021-07-19 Published:2021-10-15 Online:2021-10-29
  • Contact: GUO Huiqing

摘要:

为建立一种灵敏、特异、快速、高效地鉴定纺织品基质中大肠杆菌O157:H7的方法,筛选出大肠杆菌O157:H7特有的rfbE基因保守序列,设计PCR特异性引物和荧光双标记探针,结合免疫磁珠技术,集成创新开发一种目标菌低浓度、不可培养情况下的样品中高效、快速富集分离大肠杆菌O157:H7的技术,建立了一种针对纺织品基质的免疫磁珠富集-实时荧光定量PCR方法,其检测下限可达8 CFU/mL。利用该方法对收集到的30份阳性样品进行鉴定,鉴定结果与传统方法结果100%吻合。结果表明,新建方法稳定性强,实现了纺织品中大肠杆菌O157:H7的快速灵敏鉴定。

关键词: 纺织品, 大肠杆菌O157:H7, 毒力基因, 免疫磁珠, 实时荧光PCR

Abstract:

In order to establish a sensitive, specific, rapid and efficient method to evaluate E. coli O157:H7 in textiles, the conservative rfb E sequence of E. coli O157:H7 was screened for the design of PCR specific primers and fluorescent double labeled probes. Combined with immunomagnetic beads technology, a new technology was developed for quick and efficient isolation of E. coli O157:H7 under the condition of low concentration and non-culturable target bacteria. A real-time fluorescent quantitative PCR method was developed, and the detection limit could reach 8 CFU/g. 30 positive samples were identified using this method, and the results were 100% consistent with the results from using the traditional methods. The results show that the new method is stable, rapid and sensitive in identifying E. coli O157:H7 in textiles.

Key words: textile, Escherichia coli O157:H7, virulence gene, immunomagnetic bead, real-time PCR

中图分类号: 

  • TSO7

表1

2组引物参数"

引物名 引物序列5’-3’ 扩增长度 Genebank编号 引物所在位置
1-rfbE-F TTCCTCTCTTTCCTCTGCGG 197 CP035366.1 2724342-2724361
1-rfbE-R TGACAAATATCTGCGCTGCT 2724538-2724519
1-rfbE-P FAM-TCAGCTTGTTCTAACTGGGCT- TAMRA 2707901-2707921
2-rfbE-F CTCATTCGATAGGCTGGGGA 181 CP035366.1 2724180-2724199
2-rfbE-R CGCAGAGGAAAGAGAGGAAT 2724360-2724341
2-rfbE-P FAM-CCGAGTACATTGGCATCGTG-TAMRA 2707674-2707693

表2

体系中引物和探针各终浓度下对应的量"

序号 引物、探针终浓度/
(μmol·L-1)
体系中引物、探针
加入量/μL
0.2 0.5
0.4 1.0
0.6 1.5
0.8 2.0
1.0 2.5

图1

2组引物扩增曲线 1—第1组引物; 2—第2组引物。"

图2

引物与探针各终浓度时扩增曲线"

图3

不同模板量扩增结果"

图4

退火延伸温度为60 ℃时的扩增结果"

图5

特异性扩增曲线图"

表3

2种方法测试情况"

编号 添加水平/
(CFU·mL-1)
传统方法 PCR方法
测试结果 概率/% 测试结果 概率/%
1 80(中) 1~10个平行实验全部阳性 1~10个平行实验全部阳性
2 1~10个平行实验全部阳性 1~10个平行实验全部阳性
3 10个平行有1个阴性 96 1~10个平行实验全部阳性 100
4 10个平行有1个阴性 1~10个平行实验全部阳性
5 1~10个平行实验全部阳性 1~10个平行实验全部阳性
6 8(低) 10个平行有1个阴性 10个平行有2个阴性
7 10个平行有2个阴性 10个平行有1个阴性
8 10个平行有3个阴性 76 1~10个平行实验全部阳性 100
9 10个平行有2个阴性 10个平行有2个阴性
10 10个平行有4个阴性 1~10个平行实验全部阳性
11 8×105(高) 1~10个平行实验全部阳性 100 1~10个平行实验全部阳性 100
12 未添加 阴性 0 阴性 0

图6

7个稀释度的扩增曲线图 1—8×105 CFU/mL ; 2—8×104 CFU/mL; 3—8×103 CFU/mL;4—8×102 CFU/mL; 5—80 CFU/mL;6—8 CFU/mL;7—0.8 CFU/mL"

图7

添加目标菌的部分阳性样品扩增曲线"

表4

5个样品20个平行测试情况"


添加
水平/
(CFU/mL)
传统方法 PCR方法
测试结果 概率
/%
测试结果 概率
/%
1 80 20个平行全部阳性 20个平行全部阳性
2 20个平行全部阳性 20个平行全部阳性
3 20个平行全部阳性 100 20个平行全部阳性 100
4 20个平行全部阳性 20个平行全部阳性
5 20个平行全部阳性 20个平行全部阳性
12 未添加 阴性 阴性

图8

自然污染样品扩增结果"

[1] 中华人民共和国农业部公告第1149号,人畜共患传染病名录[EB].[2009-02-20]. http://www.moa.gov.cn/nybgb/2009/derq/201806/t20180606_6151208.htm .
Announcement No. 1149 of Ministry of agriculture of the people's Republic of China, list of zoonotic infectious diseases[EB].[2009-02-20]. http://www.moa.gov.cn/nybgb/2009/derq/201806/t20180606_6151208.htm .
[2] LEE Jae-Ik, KIM Sang-Soon, KANG Dong-Hyun. Susceptibility of Escherichia coli O157:H7 grown at low temperatures to the krypton-chlorine excilamp[J]. Sci Rep, 2019, 9(1):563.
doi: 10.1038/s41598-018-37060-1 pmid: 30679621
[3] YANG G, WANG H, DONGY, et al. High-throughput photoelectrochemical determination of E. coli O157:H7 by modulation of the anodic photoelectrochemistry of CdS quantum dots via reversible deposition of MnO2[J]. Mikrochim Acta, 2019, 187(1):20142-20147.
[4] LI B, LIU H, WANG W. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E.coli[J]. BMC Microbial, 2017, 17(1):215.
[5] PANG B, ZHAO C, LI L, et al. Development of a low-cost paper-based ELSIA method for rapid Escherichia coli O157:H7 detection[J]. Analytical Biochemistry, 2017, 542(20):58-62.
doi: 10.1016/j.ab.2017.11.010
[6] AL-NABULSI ANAS A, OLAIMAT AMIN N, OSAILI TAREQ M, et al. Behavior of Escherichia coli O157:H7 and Listeria monocytogenes during fermentation and storage of camel yogurt[J]. Journal of Dairy Science, 2016, 99(3):1802-1811.
doi: 10.3168/jds.2015-9872
[7] 刘起勇. 新时代媒介生物传染病形势及防控对策[J]. 中国媒介生物学及控制杂志, 2019, 30(1):1-6.
LIU Qiyong. Epidemic profile of vector-borne diseases and vector controlstrategies in the new era[J]. Chin J Vector Biol& Control, 2019, 30(1):1-6.
[8] Global vector control response 2017-2030[R]. Geneva:WHO, 2017.
[9] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9):191-200.
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020, 41(9):191-200.
[10] O'TOOLE G, KAPLAN H B, KOLTER R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54(1):49-79.
doi: 10.1146/micro.2000.54.issue-1
[11] GALIE S, GARCIA-GUTIERREZ C, MIGUELEZ E M, et al. Biofilmsin the food industry: health aspects and control methods[J]. Frontiersin Microbiology, 2018, 9:898.
[12] YU Longfu, YANG Yangjia, JIA Huifan, et al. Induction of Escherichia coli O157 : H7 into a viable but non-culturable state by high temperature and its resusci-tation[J]. Microorganisms 2019, 7(12), 634.
doi: 10.3390/microorganisms7120634
[13] MAIFRENI M, FRIGO F, BARTOLOMEOLI I, et al. Bacterial biofilm as a possible source of contamination in the microbreweryenvironment[J]. Food Control, 2015, 50:809-814.
doi: 10.1016/j.foodcont.2014.10.032
[14] MILANOV D, LJUBOJEVIC D, CABARKAPA I, et al. Biofilm as risk factor for salmonella contamination in various stages of poultry production[J]. European Poultry Science, 2017, 81(1):1-14.
[15] 高涛, 张克俭, 张丽萍, 等. 免疫磁珠富集-实时荧光 PCR检测生畜肉中大肠埃希菌 O157:H7 的实验研究[J]. 医学动物防制, 2016, 32(11):1184-1186.
GAO Tao, ZHANG Kejian, ZHANG Liping, et al. Immune magnetic beads enrichment-real-time fluorescent PCR detection of meat in Ecoli O157:H7 experimental research[J]. Medical Animal Control, 2016, 32(11):1184-1186.
[16] 郝良玉, 曲晗, 李志萍, 等. 适配体捕获磁珠富集大肠埃希菌O157:H7方法的建立[J]. 中国病原生物学杂志, 2020, 15(4):387-391.
HAO Liangyu, QU Han, LI Zhiping, et al. Enrichment of E. coli O157:H7 using aptamer capture magnetic beads[J]. Chinese Journal of Pathogenic Biology, 2020, 15(4):387-391.
[17] 赵亚男, 曾德新, 郭德华, 等. 一种快速鉴别牛肉中大肠杆菌O157:H7检测方法的建立及应用[J]. 中国人兽共患病学报, 2020, 36(4):272-279,296.
ZHAO Yanan, ZENG Dexin, GUO Dehua, et al. Establishment and application of a rapid detection method for Escherichia coli O157:H7 in beef[J]. Chinese Journal of Zoonoses, 2020, 36(4):272-279,296.
[18] 李轲, 郭会清, 王永杰, 等. 纺织品微生物检测标准综述[J]. 棉纺织技术, 2015, 43(9):81-84.
LI Ke, GUO Huiqing, WANG Yongjie, et al. Summary of textites microorfanism test standerd[J]. Cotton Textile Technology, 2015, 43(9):81-84.
[19] 李轲, 郭华麟, 禹建鹰, 等. 3种病原菌多重IMS-荧光RPA检测体系的建立及初步应用[J]. 畜牧与兽医, 2019, 51(3):106-112.
LI Ke, GUO Hualin, YU Jianying, et al. Establishment and preliminary application of multiple IMS real-time-RPA detection system for three pathogenic bacteria[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(3):106-112.
[20] 汪艺, 冯俊丽, 戴志远, 等. 实时荧光定量聚合酶链式反应快速鉴定三种鳕鱼[J]. 核农学报, 2020, 34(10):2190-2198.
WANG Yi, FENG Junli, DAI Zhiyuan, et al. Rapid identification of three species of COD by real-time fluorescent quantitative polymerase chain reaction[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10):2190-2198.
[1] 李轲 张子宏 禹建鹰 连素梅 郭会清. 纺织品中大肠杆菌O157:H7毒力基因rfbE检测方法建立[J]. , 2021, 42(10): 0-0.
[2] 潘梦娇, 卢业虎, 王敏. 基于四节点体温调节模型的睡眠系统舒适性预测[J]. 纺织学报, 2021, 42(09): 150-155.
[3] 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179.
[4] 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9.
[5] 杨露, 薛涛, 孟家光, 杨豆豆. 3D打印柔性服装面料的负离子功能整理及其性能[J]. 纺织学报, 2021, 42(08): 102-108.
[6] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40.
[7] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[8] 汪芬萍, 李家炜, 黄骅隽, 吴金丹, 付少海, 戚栋明, 赵磊, 何贵平. 纺织品着色用有机颜料改性技术的研究进展[J]. 纺织学报, 2021, 42(07): 192-200.
[9] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[10] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[11] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[12] 徐晋, 杨鹏程, 肖渊, 胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量[J]. 纺织学报, 2021, 42(07): 137-143.
[13] 韩其洋, 吴雄英, 丁雪梅. 合成纤维纺织品家庭洗涤释放纤维微塑料研究进展[J]. 纺织学报, 2021, 42(06): 35-40.
[14] 杜欢政, 陆莎, 孙荐, 康乾. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(06): 1-7.
[15] 王航, 王冰心, 宁新, 曲丽君, 田明伟. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(06): 189-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!