纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 99-106.doi: 10.13475/j.fzxb.20201004308
HU Qian, YANG Hai(), LI Xin, CHEN Pinting, CHEN Zhen, YI Bing
摘要:
为探索双偶氮染料直接蓝15(DB15)在水中的降解可行性及在活性氧物种作用下可能的反应位点和迁移转化机制,利用紫外光活化过硫酸钾(UV/K2S2O8)技术研究了DB15在活性氧物种作用下的降解动力学和反应机制。结果表明,双偶氮染料DB15在UV/K2S2O8体系中降解符合假一级动力学,其动力学常数速率为0.010 7 min-1, K2S2O8质量浓度、底物初始浓度和反应温度对其降解动力学影响显著。利用气相色谱-质谱法对DB15在UV/K2S2O8体系下降解中间产物进行初步的分离与分析,并结合DB15前线电子云密度(FEDs)的理论计算结果对其降解途径进行推导。研究发现:DB15在硫酸根自由基($SO_4^-$·)、羟基自由基(·OH)等活性氧物种作用下N11、N24、N41、N42和C28等活性位点易被自由基直接攻击或者发生电子转移反应,从而引起DB15分子中N=N和C—N键断裂,然后中间产物再进一步羟基化是其主要的降解途径。
中图分类号:
[1] |
KHANDEGAR V, SAROHA A K. Electrocoagulation for the treatment of textile industry effluent:a review[J]. Journal of Environmental Management, 2013, 128:949-963.
doi: 10.1016/j.jenvman.2013.06.043 |
[2] |
KURTANU, AMIR M, BAYKAL A, et al. Magnetically recyclable Fe3O4@His@Cuu nanocatalyst for degradation of Azo dyes[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(3):2548-2556.
doi: 10.1166/jnn.2016.11707 |
[3] |
LIU S H, FENG X J, GU F, et al. Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor[J]. Chemosphere, 2017, 186:287-294.
doi: 10.1016/j.chemosphere.2017.08.001 |
[4] | PILLAI I M, GUPTA A K, TIWARI M. Multivariate optimization for electrochemical oxidation of methyl orange: pathway identification and toxicity analysis[J]. Journal of Envirnmental Science & Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2014, 50(3):301-310. |
[5] |
WANG X, CHENG X, SUN D, et al. Fate and transformation of naphthylaminesulfonic azo dye reactive black 5 during wastewater treatment process[J]. Environmental Science and Pollution Research International, 2014, 21(8):5713-5723.
doi: 10.1007/s11356-014-2502-y |
[6] |
MENG X, LIU G, ZHOU J, et al. Effects of redox mediators on azo dye decolorization by shewanella algae under saline condi-tions[J]. Bioresour Technology, 2014, 151:63-68.
doi: 10.1016/j.biortech.2013.09.131 |
[7] | 王晨曦, 万金泉, 马邕文, 等. 负载型颗粒活性炭催化过硫酸钠氧化降解橙黄G[J]. 环境工程学报, 2015, 9(1):213-218. |
WANG Chenxi, WAN Jinquan, MA Yongwen, et al. Degradation of orange G catalyzed by Fe/GAC in the presence of persul-fate[J]. Chinese Journal of Environmental Engineering, 2015, 9(1):213-218. | |
[8] | 陈家斌, 魏成耀, 房聪, 等. 碳纳米管活化过二硫酸盐降解偶氮染料酸性橙7[J]. 中国环境科学, 2016, 36(12):3618-3624. |
CHEN Jiabin, WEI Chengyao, FANG Cong, et al. Decolorization of acid orange 7 by persulfate activated by carbon nanotube[J]. China Environmental Science, 2016, 36(12):3618-3624. | |
[9] | 王森, 程赛鸽, 肖雪莉, 等. Fe2+活化过硫酸盐对市政污泥EPS性能的影响[J]. 环境工程学报, 2019, 13(9):2243-2249. |
WANG Sen, CHENG Saige, XIAO Xueli, et al. Effect of Fe2+ activated persulfate on EPS properties of sewage sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(9):2243-2249. | |
[10] |
WANG Z Y, SHAO Y S, GAO N Y, et al. Degradation kinetic of dibutyl phthalate(DBP) by sulfate radical and hydroxyl radical-based advanced oxidation process in UV/persulfate system[J]. Separation and Purification Technology, 2018, 195:92-100.
doi: 10.1016/j.seppur.2017.11.072 |
[11] | 徐鹏飞, 郭怡秦, 王光辉, 等. 紫外活化过硫酸盐对甲基橙脱色处理实验研究[J]. 环境工程, 2017, 35(11):58-61. |
XU Pengfei, GUO Yiqin, WANG Guanghui, et al. Experimental study on UV-activated presulfate for decolorization of methyl or wastewater[J]. Environmental Engineering, 2017, 35(11):58-61. | |
[12] | 范星, 唐玉朝, 姚顺顺. 紫外-活性炭协同活化过硫酸氢钾对罗丹明B的降解[J]. 环境化学, 2018, 37(12):2711-2720. |
FAN Xing, TANG Yuchao, YAO Shunshun. Degradation of Rhodamine B by peroxymonosulfate synergistically activated by UV/activated carbon[J]. Environmental Chemistry, 2018, 37(12):2711-2720. | |
[13] |
ZHANG L L, DING W, QIU J T, et al. Modeling and optimization study on sulfumethoxazole degradation by electrochemically activated persulfate process[J]. Journal of Cleaner Production, 2018, 197:297-305.
doi: 10.1016/j.jclepro.2018.05.267 |
[14] | 冯俊生, 姚海详, 蔡晨, 等. 微生物染料电池电活化过硫酸盐降解甲基橙偶氮染料[J]. 环境科学研究, 2019, 32(5):913-920. |
FENG Junsheng, YAO Haixiang, CAI Chen, et al. Microbial fuel cell electro-activated persulfate to degrade methyl orange azo dye[J]. Research of Environmental Sciences, 2019, 32(5):913-920. | |
[15] |
ZHANG Y X, LIU H L, XIN Y J, et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation[J]. Chemical Engineering Journal, 2019, 358:1446-1453.
doi: 10.1016/j.cej.2018.10.157 |
[16] | 朱淳, 徐江流, 申哲民, 等. 热活化过硫酸钠对偶氮染料的降解规律[J]. 净水技术, 2019, 38(7):108-114. |
ZHU Chun, XU Jiangliu, SHEN Zhemin, et al. Degradation rule of azo dyes by thermally activated sodium persulfate[J]. Water Purification on Technology, 2019, 38(7):108-114. | |
[17] | GAO F, LI Y J, XIANG B. Degradation of bisphenol a through transition metals activating persulfate process[J]. Ecotoxicology and Environmental Safety, 2018, 15:239-247. |
[18] | 郭婧怡, 马扬帆, 杨绍贵, 等. 切割钢渣活化过硫酸盐降解偶氮类染料酸性红73[J]. 环境科学学报, 2019, 39(8):2550-2558. |
GUO Jingyi, MA Yangfan, YANG Shaogui, et al. Degradation of acid red 73 by persulfate activated by steel slag[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2550-2558. | |
[19] | 杨珂, 唐琪, 杨晓丹, 等. 铁酸铜非均相活化过硫酸盐降解罗丹明B[J]. 中国环境科学, 2019, 39(9):3761-3769. |
YANG Ke, TANG Qi, YANG Xiaodan, et al. Degradation of rhodamine B by heterogeneous activation of persulfate with copper ferrate[J]. China Environmental Science, 2019, 39(9):3761-3769. | |
[20] | 唐玉朝, 尹汉雄, 黄健, 等. 零价铁活化过硫酸钠对偶氮染料4BS的脱色机理[J]. 环境化学, 2018, 37(5):1071-1078. |
TANG Yuchao, YIN Hanxiong, HUANG Jian, et al. Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate[J]. Environmental Chemistry, 2018, 37(5):1071-1078. | |
[21] | 钟欣, 吴迪, 张凯欣, 等. 光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ[J]. 环境化学, 2019, 38(12):2860-2868. |
ZHONG Xin, WU Di, ZHANG Kaixin, et al. Photo-assisted activation of persulfate by using Fe/BiOCl for the degradation of azo dye Orange Ⅱ[J]. Environmental Chemistry, 2019, 38(12):2860-2868. | |
[22] | SUN J H, SHI S H, LE Y F, et al. Fenton oxidative decolorization of the azo dye direct blue 15 in aqueous solution[J]. Chemical Engineering Journal, 2009, 15(3):680-683. |
[23] | 胡倩, 阳海, 陶文杰, 等. 酸性红37在UV/K2S2O8体系中降解动力学和转化机制[J]. 环境化学, 2019, 38(12):2869-2878. |
HU Qian, YANG Hai, TAO Wenjie, et al. Degradation kinetic optimization and mechanistic investigation of acid red 37 in UV/K2S2O8 system[J]. Environmental Chemistry, 2019, 38(12):2869-2878. | |
[24] | 易兵, 胡倩, 杨辉琼, 等. 酸性红(AR37)光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(6):81-88. |
YI Bing, HU Qian, YANG Huiqiong, et al. Degradation kinetic optimization and mechanistic investigation of Monoazo Acid Red 37 in photocatalytic system[J]. Journal of Textile Research, 2018, 39(6):81-88. | |
[25] |
YANG H, ZHUANG S, HU Q, et al. Competitive reactions of hydroxyl and sulfate radicals with sulfonamides in Fe2+/S2O82- system: reaction kinetics, degradation mechanism and acute toxicity[J]. Chemical Engineering Journal, 2018, 339:32-41.
doi: 10.1016/j.cej.2018.01.106 |
[26] | YANG H, ZHOU W C, YANG L P, et al. Flutriafol degradation in Ag +/S2O82- aqueous system: an experimental and theoretical investigation[J]. Environment Protection Engineering, 2018, 44(2):57-72. |
[27] | 庄帅, 阳海, 安继斌, 等. 硫酸根自由基对酸性红37的降解动力学与机制[J]. 纺织学报, 2019, 40(11):131-139. |
ZHUANG Shuai, YANG Hai, AN Jibin, et al. Degradation kinetics and mechanism of Acid Red 37 under attack of sulfate radicals[J]. Journal of Textile Research, 2019, 40(11):131-139. | |
[28] |
YANG H, WEI H Q, HU L T, et al. Mechanism for the photocatalytic transformation of s-trizine herbicides by ·OH radicals over TiO2[J]. Chemical Engineering Journal, 2016, 300:209-216.
doi: 10.1016/j.cej.2016.04.099 |
[1] | 张文欢 李俊. 低热辐射环境消防服系统内热传递机制的研究进展[J]. , 2021, 42(10): 0-0. |
[2] | 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198. |
[3] | 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40. |
[4] | 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179. |
[5] | 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186. |
[6] | 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24. |
[7] | 张思宇, 余莉, 贾贺, 刘鑫. 柔性伞衣织物的自由变形折叠建模及其充气机制研究[J]. 纺织学报, 2021, 42(07): 108-114. |
[8] | 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179. |
[9] | 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188. |
[10] | 于金超, 姬洪, 陈康, 甘宇. 聚醚酯/聚对苯二甲酸丁二醇酯并列复合纤维的制备及其性能[J]. 纺织学报, 2021, 42(04): 42-47. |
[11] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183. |
[12] | 潘佳俊, 夏兆鹏, 张海宝, 卢杨, 赵吉林, 王学农, 王亮, 刘雍. 牦牛绒过氧化氢/过硫酸铵脱色体系工艺优化及其机制[J]. 纺织学报, 2021, 42(04): 101-106. |
[13] | 杨婷婷, 高远博, 郑毅, 王学利, 何勇. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(04): 1-7. |
[14] | 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189. |
[15] | 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184. |
|